Exercises accompanying the lecture series "Algebraic and Holonomic Statistics"

Anna-Laura Sattelberger

Exercise 1 (Another coin model).

Consider the following discrete statistical model \mathcal{M} with 3 states. A gambler has a biased coin which shows *head* with probability x, and *tail* with probability 1 - x. She flips the coin thrice and records three possible outcomes: \diamond only heads \diamond mixed outcome \diamond only tails

(a) Compute a parameterization and an implicitization of the model. More precisely, determine a homogeneous polynomial $f \in \mathbb{C}[p_0, p_1, p_2]$ of degree 3 which determines \mathcal{M} . Interpret the two images in Figure 1. Can you reproduce them in Mathematica?

Figure 1: Images accompanying Exercise 1 (a)

- (b) Determine the very affine variety X of the model and compute its ML degree $d_{ML}(X)$.
- (c) For data $s = (s_0, s_1, s_2) \in \mathbb{N}^3$, compute the likelihood function L_s and the maximum likelihood estimator of the model in the implicitization you found in (a). To do so, you may use Mathematica, for instance.
- (d) Compute the Bernstein-Sato ideal of the model. You can compute it using the library Dmod_lib in the computer algebra software Singular¹ by running the following code.

LIB "dmod.lib"; ring r = 0,x,dp; setring r; ideal F = (x³,3*x*(1-x),(1-x)³); def A = annfsBMI(F); setring A; BS;

In order to interpret the output of the code above, have a look at the documentation of the command annfsBMI: https://www.singular.uni-kl.de/Manual/4-0-3/sing_598.htm

(e) Compute the tropical variety of the model.

¹An online version of Singular is available at the following link: https://www.singular.uni-kl.de:8003/

Exercise 2 (Mellin transform).

The Mellin transform of a complex-valued function f in n variables $x = (x_1, \ldots, x_n)$ is

$$\mathfrak{M}{f}(\nu_1,\ldots,\nu_n) = \int_{\Gamma} f(x_1,\ldots,x_n) x_1^{\nu_1}\cdots x_n^{\nu_n} \frac{\mathrm{d}x_1\cdots\mathrm{d}x_n}{x_1\cdots x_n},$$

where the integration contour Γ is such that the boundary term in IBP vanishes and the integral converges. The *(n-th)* shift algebra, denoted S_n , is the non-commutative \mathbb{C} -algebra obtained from the free \mathbb{C} -algebra that is generated by variables ν_1, \ldots, ν_n and shift-operators $\sigma_1^{\pm 1}, \ldots, \sigma_n^{\pm 1}$ by imposing the following relations: all generators commute, except ν_i and $\sigma_i^{\pm 1}$. They obey the rule

$$\sigma_i \nu_i^{\pm 1} = (\nu_i \pm 1) \sigma_i^{\pm 1}$$

- (a) Compute $\mathfrak{M}\{x_i \cdot f\}$ and $\mathfrak{M}\{x_i \partial_i \bullet f\}$.
- (b) Formulate the action of S_n on $\mathfrak{M}{f}$.
- (c) Building on (a), formulate the Mellin transform as an isomorphism of the Weyl algebra on the torus $D_{\mathbb{G}_m^n} = \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]\langle \partial_1, \ldots, \partial_n \rangle$ and the shift algebra S_n . This isomorphism is referred to as "algebraic Mellin transform".
- (d) Let $f = (x_1+1)(x_2+1) \in \mathbb{C}[x_1, x_2]$. Compute its s-parametric annihilator $\operatorname{Ann}_{D_2[s]}(f^s)$. In order to compute it, you can use the command annfsBMI in Singular. The s-parametric annihilator is encoded as LD in the output ring. Deduce shift-relations for $\mathfrak{M}\{f^s\}$.