Exercises accompanying the lecture series "Algebraic and Holonomic Statistics"

Anna-Laura Sattelberger

Exercise 1 (Another coin model).

Consider the following discrete statistical model \mathcal{M} with 3 states. A gambler has a biased coin which shows head with probability x, and tail with probability $1-x$. She flips the coin thrice and records three possible outcomes: \diamond only heads \diamond mixed outcome \diamond only tails
(a) Compute a parameterization and an implicitization of the model. More precisely, determine a homogeneous polynomial $f \in \mathbb{C}\left[p_{0}, p_{1}, p_{2}\right]$ of degree 3 which determines \mathcal{M}. Interpret the two images in Figure 1. Can you reproduce them in Mathematica?

Figure 1: Images accompanying Exercise 1 (a)
(b) Determine the very affine variety X of the model and compute its ML degree $\mathrm{d}_{\mathrm{ML}}(X)$.
(c) For data $s=\left(s_{0}, s_{1}, s_{2}\right) \in \mathbb{N}^{3}$, compute the likelihood function L_{s} and the maximum likelihood estimator of the model in the implicitization you found in (a). To do so, you may use Mathematica, for instance.
(d) Compute the Bernstein-Sato ideal of the model. You can compute it using the library Dmod_lib in the computer algebra software Singular ${ }^{1}$ by running the following code.

```
LIB "dmod.lib";
ring r = 0,x,dp; setring r;
ideal F = (x^3,3*x*(1-x),(1-x)^3);
def A = annfsBMI(F); setring A; BS;
```

In order to interpret the output of the code above, have a look at the documentation of the command annfsBMI: https://www.singular.uni-kl.de/Manual/4-0-3/sing_598.htm
(e) Compute the tropical variety of the model.

[^0]
Exercise 2 (Mellin transform).

The Mellin transform of a complex-valued function f in n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\mathfrak{M}\{f\}\left(\nu_{1}, \ldots, \nu_{n}\right)=\int_{\Gamma} f\left(x_{1}, \ldots, x_{n}\right) x_{1}^{\nu_{1}} \cdots x_{n}^{\nu_{n}} \frac{\mathrm{~d} x_{1} \cdots \mathrm{~d} x_{n}}{x_{1} \cdots x_{n}}
$$

where the integration contour Γ is such that the boundary term in IBP vanishes and the integral converges. The (n-th) shift algebra, denoted S_{n}, is the non-commutative \mathbb{C}-algebra obtained from the free \mathbb{C}-algebra that is generated by variables ν_{1}, \ldots, ν_{n} and shift-operators $\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n}^{ \pm 1}$ by imposing the following relations: all generators commute, except ν_{i} and $\sigma_{i}^{ \pm 1}$. They obey the rule

$$
\sigma_{i} \nu_{i}^{ \pm 1}=\left(\nu_{i} \pm 1\right) \sigma_{i}^{ \pm 1}
$$

(a) Compute $\mathfrak{M}\left\{x_{i} \cdot f\right\}$ and $\mathfrak{M}\left\{x_{i} \partial_{i} \bullet f\right\}$.
(b) Formulate the action of S_{n} on $\mathfrak{M}\{f\}$.
(c) Building on (a), formulate the Mellin transform as an isomorphism of the Weyl algebra on the torus $D_{\mathbb{G}_{m}^{n}}=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ and the shift algebra S_{n}. This isomorphism is referred to as "algebraic Mellin transform".
(d) Let $f=\left(x_{1}+1\right)\left(x_{2}+1\right) \in \mathbb{C}\left[x_{1}, x_{2}\right]$. Compute its s-parametric annihilator $\operatorname{Ann}_{D_{2}[s]}\left(f^{s}\right)$. In order to compute it, you can use the command annfsBMI in Singular. The s-parametric annihilator is encoded as LD in the output ring. Deduce shift-relations for $\mathfrak{M}\left\{f^{s}\right\}$.

[^0]: ${ }^{1}$ An online version of Singular is available at the following link: https://www.singular.uni-kl.de:8003/

