D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals

Johannes Henn, Elizabeth Pratt, Anna-Laura Sattelberger, Simone Zoia arXiv:2303.11105

Amplitudes 2023
August 07, 2023

Motivation

Aim: exploit algebraic geometry behind Feynman integrals

\diamond extraction of properties of Feynman integrals from their PDEs
\diamond algorithmic computation of series solutions of PDEs by algebraic methods
\diamond evaluation of Feynman integrals
\diamond providing a dictionary between algebraic analysis and high energy physics

Outline

(1) Algebraic analysis

$$
D=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

(2) Algebraic computation of solutions

$$
F_{k}(x)=x^{A} \cdot \sum_{p, b \text { suitable }} c_{p b} x^{p} \log (x)^{b}
$$

(3) Merging D-module and physics methods

Linear PDEs through an algebraic lens

Definition

The Weyl algebra is obtained from the free algebra over \mathbb{C}

$$
D:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

by imposing the following relations:

$$
\left[\partial_{i}, x_{j}\right]=\partial_{i} x_{j}-x_{j} \partial_{i}=\delta_{i j} \quad \text { for } \quad i, j=1, \ldots, n .
$$

From PDEs to D-ideals and vice versa

$\diamond D$ gathers linear differential operators with polynomial coefficients

$$
P=\sum_{\alpha, \beta \in \mathbb{N}^{n}} c_{\alpha, \beta} x^{\alpha} \partial^{\beta}, \quad c_{\alpha, \beta} \in \mathbb{C} \rightsquigarrow \text { PDE: } P \bullet f\left(x_{1}, \ldots, x_{n}\right)=0
$$

Example: $P=\partial^{2}-x \in D$ encodes Airy's equation $f^{\prime \prime}(x)-x \cdot f(x)=0$.
\diamond left D-ideals encode systems of linear PDEs
operations with D-ideals: integral transforms, restrictions, push forward, ...

Holonomic functions

One variable

A function $f(x)$ is holonomic if there exists $P \in D$ that annihilates f, i.e., $P \bullet f=0$. Multivariate case: $f\left(x_{1}, \ldots, x_{n}\right)$ is holonomic if $\operatorname{Ann}_{D}(f)$ is a "holonomic" D-ideal.
Examples: Feynman integrals, hypergeometric, periods, Airy, polylogarithms, ...
Denote by $R_{n}=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ the rational Weyl algebra.
Theorem (Cauchy-Kovalevskaya-Kashiwara)
Let I be a holonomic D-ideal. The \mathbb{C}-vector space of holomorphic solutions to I on a simply connected domain in \mathbb{C}^{n} outside the singular locus of I has finite dimension

$$
\operatorname{rank}(I)=\operatorname{dim}_{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)}\left(R_{n} / R_{n} I\right)
$$

\Rightarrow A holonomic function is encoded by finite data!

Singularities

D-ideals can be regular singular or irregular singular.
Univariate case: read from growth behavior of general solution near singular points Example: $\diamond \log (x)$ moderate growth at $x=0 \diamond \exp (1 / x)$ essential singularity at $x=0$

Running example

Variables: $\quad x_{1}=\left|p_{1}\right|^{2}, \quad x_{2}=\left|p_{2}\right|^{2}, \quad x_{3}=\left|p_{1}+p_{2}\right|^{2}$.

The D-ideal $I_{3}\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$

Consider $I_{3}\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=\left\langle P_{1}, P_{2}, P_{3}\right\rangle \subset D_{3}$ arising from conformal invariance. dilatations + conformal boosts

$$
\begin{aligned}
& P_{1}=4\left(x_{1} \partial_{1}^{2}-x_{3} \partial_{3}^{2}\right)+2\left(2+c_{0}-2 c_{1}\right) \partial_{1}-2\left(2+c_{0}-2 c_{3}\right) \partial_{3}, \\
& P_{2}=4\left(x_{2} \partial_{2}^{2}-x_{3} \partial_{3}^{2}\right)+2\left(2+c_{0}-2 c_{2}\right) \partial_{2}-2\left(2+c_{0}-2 c_{3}\right) \partial_{3}, \\
& P_{3}=\left(2 c_{0}-c_{1}-c_{2}-c_{3}\right)+2\left(x_{3} \partial_{3}+x_{2} \partial_{2}+x_{1} \partial_{1}\right) .
\end{aligned}
$$

Parameters: $c_{0}=d$ spacetime dimension $\quad c_{1}, c_{2}, c_{3}$ conformal weights
Choice: $\quad I_{3}:=I_{3}(4,2,2,2) \widehat{=}$ conformal ϕ^{4}-theory in 4 spacetime dimensions I_{3} is regular singular, $\operatorname{rank}\left(I_{3}\right)=4$

Remark: The D-ideal I_{3} is the restriction of a GKZ system.
L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019.

Solutions to I_{3}

The solution space of $I_{3} \ldots$
. . . is spanned by the triangle integral

$$
J_{d ; \nu_{1}, \nu_{2}, \nu_{3}}^{\text {triangle }}=\int_{\mathbb{R}^{d}} \frac{\mathrm{~d}^{d} k}{\mathrm{i} \pi{ }^{\frac{d}{2}}} \frac{1}{\left(-|k|^{2}\right)^{\nu_{1}}\left(-\left|k+p_{1}\right|^{2}\right)^{\nu_{2}}\left(-\left|k+p_{1}+p_{2}\right|^{2}\right)^{\nu_{3}}}
$$

and its analytic continuations. $\operatorname{rank}\left(I_{3}\right)=4$

One-loop triangle Feynman diagram with massless propagators and massive external particles.

Unitary exponents $\nu_{1}=\nu_{2}=\nu_{3}=1, d=4$:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=J_{4 ; 1,1,1}^{\text {triangle }}\left(x_{1}, x_{2}, x_{3}\right), \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\sqrt{\lambda}} \log \left(\frac{x_{1}-x_{2}-x_{3}-\sqrt{\lambda}}{x_{1}-x_{2}-x_{3}+\sqrt{\lambda}}\right), \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\sqrt{\lambda}} \log \left(\frac{x_{2}-x_{1}-x_{3}-\sqrt{\lambda}}{x_{2}-x_{1}-x_{3}+\sqrt{\lambda}}\right), \\
& f_{4}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\sqrt{\lambda}}
\end{aligned}
$$

where $\lambda=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)$ is the Källén function.

Initial forms

Principal symbol $(n=1)$
$\mathrm{in}_{(0,1)}\left(x \partial-x^{2}\right)=x \xi$ is the part of maximal $(0,1)$-weight $\quad \partial \rightsquigarrow \xi$
Several variables: $\operatorname{in}_{(0,1)}\left(x_{1} \partial_{1}+x_{2} \partial_{2}+1\right)=x_{1} \xi_{1}+x_{2} \xi_{2} \quad$ in general, not a monomial
Algebraically
\diamond The characteristic ideal of a D-ideal I is

$$
\operatorname{in}_{(0,1)}(I)=\left\langle\operatorname{in}_{(0,1)}(P) \mid P \in I\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left[\xi_{1}, \ldots, \xi_{n}\right] .
$$

\diamond The characteristic variety of I is

$$
\operatorname{Char}(I)=V\left(\operatorname{in}_{(0,1)}(I)\right)=\left\{(x, \xi) \mid p(x, \xi)=0 \text { for all } p \in \operatorname{in}_{(0,1)}(I)\right\} \subset \mathbb{C}^{2 n} .
$$

\diamond The singular locus Sing (I) of I is the vanishing set of the ideal

$$
\left(\operatorname{in}_{(0,1)}(I):\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle^{(\infty)}\right) \cap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] . \quad \text { saturation }+ \text { elimination }
$$

Examples

(1) For $I=\left\langle x^{2} \partial+1\right\rangle \subset D, \quad \mathrm{in}_{(0,1)}(I)=\left\langle x^{2} \xi\right\rangle$ and $\operatorname{Sing}(I)=V(x)=\{0\}$. $\mathbb{C} \cdot \exp (1 / x)$
(2) The characteristic ideal of $I=\left\langle x_{1} \partial_{2}, x_{2} \partial_{1}\right\rangle \subset D_{2}$ is the $\mathbb{C}\left[x_{1}, x_{2}, \xi_{1}, \xi_{2}\right]$-ideal $\left\langle x_{1} \xi_{2}, x_{2} \xi_{1}, x_{1} \xi_{1}-x_{2} \xi_{2}, x_{2} \xi_{2}^{2}, x_{2}^{2} \xi_{2}\right\rangle$ and $\operatorname{Sing}(I)=V\left(x_{1}, x_{2}\right) \subset \mathbb{C}^{2} . \mathbb{C} \cdot 1$

Gröbner deformations

Weights of the form $(-w, w), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$
\diamond The w-weight of $c_{\alpha, \beta} x^{\alpha} \partial^{\beta}$ is $-w \cdot \alpha+w \cdot \beta$.
\diamond The initial form of $P=\sum c_{\alpha, \beta} X^{\alpha} \partial^{\beta}$ is the subsum of all terms of maximal w-weight.

Initial and indicial ideal (with respect to w)
\diamond The initial ideal of I is the D-ideal

$$
\operatorname{in}_{w}(I)=\left\langle\operatorname{in}_{(-w, w)}(P) \mid P \in I\right\rangle \subset D
$$

Small Gröbner fan of $I_{3} \subset D$, here drawn in $\mathbb{R}_{w}^{3} / \mathbb{R}(1,1,1)$.
\diamond The indicial ideal of I is the $\mathbb{C}\left[\theta_{1}, \ldots, \theta_{n}\right]$-ideal

$$
\operatorname{ind}_{w}(I)=R_{n} \cdot \operatorname{in}_{(-w, w)}(I) \cap \mathbb{C}\left[\theta_{1}, \ldots, \theta_{n}\right] . \quad \theta_{i}=x_{i} \partial_{i} \text { the } i \text {-th Euler operator }
$$

The zeroes of $\operatorname{ind}_{w}(I)$ in \mathbb{C}^{n} are the exponents of I.
The starting monomials of solutions to I will be of the form $x^{A} \log (x)^{B}$ with $A \in V\left(\right.$ ind $\left._{w}(I)\right)$.

Pipeline: from / to starting terms of series solutions

$$
D_{n} \text {-ideal I } \stackrel{w \in \mathbb{R}^{n}}{\rightsquigarrow} \operatorname{in}_{(-w, w)}(I) \rightsquigarrow \operatorname{ind}_{w}(I) \subset \mathbb{C}\left[\theta_{1}, \ldots, \theta_{n}\right] \stackrel{V\left(\operatorname{ind}_{w}(I)\right)}{\rightsquigarrow} x^{A} \log (x)^{B}
$$

Canonical series solutions

Aim: Solutions to I of the form $F_{k}(x)=x^{A} \cdot \sum_{\substack{0 \leq p \cdot w \leq k, p \in C_{\mathbb{Z}}^{*} \\ 0 \leq b_{j}<\operatorname{rank}(I)}}, c_{p b} x^{p} \log (x)^{b}$.

Initial series

The w-weight of a monomial $x^{A} \log (x)^{B}$ is the real part of $w \cdot A$. The initial series $\operatorname{in}_{w}(f)$ of a function $f=\sum_{A, B} c_{A B} x^{A} \log (x)^{B}$ is the subsum of all terms of minimal w-weight.

Proposition

If I is regular holonomic and w a generic weight for I, there exist rank(I) many canonical series solutions of I which lie in the Nilsson ring $N_{w}(I)$ of I with respect to w,

$$
N_{w}(I):=\mathbb{C} \llbracket C_{w}(I)_{\mathbb{Z}}^{*} \rrbracket\left[x^{e^{1}}, \ldots, x^{e^{r}}, \log \left(x_{1}\right), \ldots, \log \left(x_{n}\right)\right]
$$

$\diamond C_{w}(I)^{*}$ the dual cone of the Gröbner cone of $w \quad \diamond C_{w}(I)_{\mathbb{Z}}^{*}=C_{w}(I)^{*} \cap \mathbb{Z}^{n}$
$\diamond\left\{e^{1}, \ldots, e^{r}\right\}$ the exponents of I
Monomial ordering \prec_{w} refining w-weight: The number of solutions to I with starting monomial of the form $x^{A} \log (x)^{B}$ is the multiplicity of A as zero of ind ${ }_{w}(I)$.

[^0]
The SST algorithm

Theorem (Saito-Sturmfels-Takayama)

Let I be a regular holonomic $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$-ideal and $w \in \mathbb{R}^{n}$ generic for I. Let I be given by a Gröbner basis for w. There exists an algorithm which computes all terms up to specified w-weight in the canonical series solutions to I with respect to \prec_{w}.

Procedure

Input: A regular holonomic D_{n}-ideal I, its small Gröbner fan Σ in \mathbb{R}^{n}, a weight vector $w \in \mathbb{R}^{n}$ that is generic for I, and the desired order $k \in \mathbb{N}$.
\ldots. for each starting monomial $x^{A} \log (x)^{B}$: solving linear system modulo desired w-weight for vector spaces of monomials of same w-weight. recurrence relations

Output: The canonical series solutions of I with respect to w, truncated at w-weight k.

[^1]
Starting monomials for l_{3}

The singular locus of I_{3} is
Sing $\left(I_{3}\right)=V\left(x_{1} x_{2} x_{3} \cdot \lambda\right) \subset \mathbb{C}^{3}$.
Vanishing locus of the Källén polynomial
$\lambda=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)$

+ coordinate hyperplanes $\left\{x_{i}=0\right\}$

Initial and indicial ideal for $w=(-1,0,1) \in C_{1}$

$$
\begin{aligned}
& \diamond \operatorname{in}_{(-w, w)}\left(I_{3}\right)=\left\langle x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+1, x_{2} \partial_{2}^{2}+\partial_{2}, x_{3} \partial_{3}^{2}+\partial_{3}\right\rangle \subset D_{3} \\
& \diamond \operatorname{ind}_{w}\left(I_{3}\right)=R_{3} \cdot \operatorname{in}_{(-w, w)}(I) \cap \mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}\right]=\left\langle\theta_{1}+\theta_{2}+\theta_{3}+1, \theta_{2}^{2}, \theta_{3}^{2}\right\rangle \subset \mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}\right]
\end{aligned}
$$

Exponents of $I: \quad V\left(\operatorname{ind}_{w}\left(I_{3}\right)\right)=\{(-1,0,0)\} . \quad \widehat{=} x_{1}^{-1} x_{2}^{0} x_{3}^{0}=1 / x_{1}$
Change of variables: $\quad y_{1}=x_{1}, \quad y_{2}=x_{2} / x_{1}, \quad y_{3}=x_{3} / x_{1}$.
Starting monomials of solutions read from primary decomposition of ind ${ }_{w}(1)$
$\diamond 1 / y_{1} \diamond 1 / y_{1} \log \left(y_{2}\right) \diamond 1 / y_{1} \log \left(y_{3}\right) \diamond 1 / y_{1} \log \left(y_{2}\right) \log \left(y_{3}\right)$

Canonical series solutions of I_{3}

Lifting the starting monomials here displayed for f_{1}, f_{2}, f_{3} for w-weight 0 to 4

$$
\begin{aligned}
\tilde{f}_{1}\left(y_{2}, y_{3}\right)= & 1+y_{2}+y_{3}+y_{2}^{2}+4 y_{2} y_{3}+y_{3}^{2}+y_{2}^{3}+9 y_{2}^{2} y_{3}+y_{2}^{4}+\cdots, \\
\tilde{f}_{2}\left(y_{2}, y_{3}\right)= & \log \left(y_{2}\right)+\log \left(y_{2}\right) y_{2}+\left(2+\log \left(y_{2}\right)\right) y_{3}+\log \left(y_{2}\right) y_{2}^{2}+\left(4+4 \log \left(y_{2}\right)\right) y_{2} y_{3} \\
& +\left(3+\log \left(y_{2}\right)\right) y_{3}^{2}+\left(\log \left(y_{2}\right)\right) y_{2}^{3}+\left(6+9 \log \left(y_{2}\right)\right) y_{2}^{2} y_{3}+\log \left(y_{2}\right) y_{2}^{4}+\cdots, \\
\tilde{f}_{3}\left(y_{2}, y_{3}\right)= & \log \left(y_{3}\right)+\left(2+\log \left(y_{3}\right)\right) y_{2}+\log \left(y_{3}\right) y_{3}+\left(3+\log \left(y_{3}\right)\right) y_{2}^{2} \\
& +\left(4+4 \log \left(y_{3}\right)\right) y_{2} y_{3}+\log \left(y_{3}\right) y_{3}^{2}+\left(\frac{11}{3}+\log \left(y_{3}\right)\right) y_{2}^{3} \\
& +\left(15+9 \log \left(y_{3}\right)\right) y_{2}^{2} y_{3}+\left(\frac{25}{6}+\log \left(y_{3}\right)\right) y_{2}^{4}+\cdots .
\end{aligned}
$$

Then $f_{i}\left(x_{1}, x_{2}, x_{3}\right)=1 / x_{1} \cdot \tilde{f}_{i}\left(y_{2}, y_{3}\right)$ are canonical series solutions to I_{3}. (truncated)

Implementation in Sage for the bivariate case
Available at: https://mathrepo.mis.mpg.de/DModulesFeynman/

Truncation with respect to w-weight

$f\left(x_{1}, \ldots, x_{n}\right) \quad$ general solution of a regular holonomic D-ideal /

Capturing the weight vector via an auxiliary variable

Choose a generic weight $w \in \mathbb{R}^{n}$ for I. Set

$$
f_{w}\left(t, x_{1}, \ldots, x_{n}\right):=f\left(t^{w_{1}} x_{1}, \ldots, t^{w_{n}} x_{n}\right) .
$$

Merging with canonical series solutions

(1) From I, derive a Fuchsian system for $f_{w}\left(t, x_{1}, \ldots, x_{n}\right)$.
(2) Solve the system via the path-ordered exponential formalism.
(3) Compute the asymptotic expansion of $f_{w}(t, x)$ around $t=0$:

$$
f_{w}(t, x)=\sum_{k \geq 0} \sum_{m=0}^{m_{\max }} c_{k, m}(x) t^{k} \log (t)^{m}
$$

By construction, $c_{k, m}(x)$ has w-weight k.
(4) Truncate the expansion at t^{k} and evaluate at $t=1$. Nota bene: $\left.f_{w}\right|_{t=1} \equiv f$.

1. F. Brown. Iterated Integrals in Quantum Field Theory. In 6th Summer School on Geometric and Topological Methods for Quantum Field Theory, pages 188-240, 2013.
2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV.

Interscience Publishers John Wiley \& Sons, Inc., New York-London-Sydney, 1965.

Conclusion

In a nutshell
(1) D-ideals encode crucial properties of their solution functions
e.g. Feynman integrals, arbitrary loop order, irrespective of whether polylogarithmic, etc.
(2) algorithmic computation of truncated series solutions by algebraic methods no gauge transform required
(3) evaluation of solution functions to desired w-weight freedom in choosing weight vector w
(4) dictionary algebra-physics
computing series solutions, Pfaffian system vs. Laporta's algorithm

Thank you for your attention!
J. Henn, E. Pratt, A.-L. S., and S. Zoia. D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals. Preprint arXiv:2303.11105, 2023.

The conformal group

$$
\begin{array}{ll}
z=\left(z^{0}, z^{1}, \ldots, z^{d-1}\right)^{\top} & \text { vector of } d \text {-dimensional spacetime coordinates } \\
z_{1} \cdot z_{2}:=z_{1}^{\top} \cdot g \cdot z_{2} & g=\operatorname{diag}(1,-1, \ldots,-1) \text { the metric tensor } \\
p_{1}, \ldots, p_{n} & \text { momentum vectors }
\end{array}
$$

Translations	$z \longrightarrow z+\epsilon, \epsilon \in \mathbb{R}^{d}$
(Proper) Lorentz transformations	$z \longrightarrow \Lambda \cdot z, \Lambda \in \mathbb{S O}(1, d-1)$
Dilatations	$z \longrightarrow \mathrm{e}^{\omega} z, \omega \in \mathbb{R}$
Conformal boosts	$z \longrightarrow \frac{z-\|z\|^{2} \epsilon}{1-2 z \cdot \epsilon+\|z\|^{2}\|\epsilon\|^{2}}, \quad \epsilon \in \mathbb{R}^{d}$

Poincaré group symmetry group of Einstein's theory of special relativity conformal group Poincaré + dilatations + conformal boosts

Invariance under...

\diamond translations implies momentum conservation
\diamond Lorentz transformation implies dependency on Mandelstam invariants $p_{k} \cdot p_{\ell}$ only
Generators in position space to momentum space via Fourier transform
\diamond dilatations:

$$
\begin{aligned}
& \mathfrak{D}_{n}=-\mathrm{i} \sum_{k=1}^{n}\left(z_{k} \cdot \partial_{z_{k}}+c_{k}\right) \\
& \mathfrak{K}_{n}=\mathrm{i} \sum_{k=1}^{n}\left[\left|z_{k}\right|^{2} \partial_{z_{k}}-2 z_{k}\left(z_{k} \cdot \partial_{z_{k}}\right)-2 c_{k} z_{k}\right]
\end{aligned}
$$

\diamond conformal boosts:
Running example: $n=3$, momenta p_{1}, p_{2}, p_{3}, variables $x_{i}=\left|p_{i}\right|^{2}$
$\diamond P_{3}$ stems from $\widehat{\mathfrak{D}_{3}}$
$\diamond P_{1}, P_{2}$ stem from $\widehat{\mathfrak{K}_{3}}$

Systems in matrix form

$\diamond I$ a holonomic D_{n}-ideal of rank $m=\operatorname{rank}(I), f \in \operatorname{Sol}(I)$
$\diamond 1, s_{2}, \ldots, s_{m}$ a $\mathbb{C}(x)$-basis of $R_{n} / R_{n} I \quad$ standard monomials for a Gröbner basis of I

Pfaffian system

Set $F=\left(f, s_{2} \bullet f, \ldots, s_{m} \bullet f\right)^{\top}$. There exist $P_{1}, \ldots, P_{n} \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{m \times m}$ for which

$$
\partial_{i} \bullet F=P_{i} \cdot F
$$

The matrices P_{i} fulfill $P_{i} P_{j}-P_{j} P_{i}=\partial_{i} \bullet P_{j}-\partial_{j} \bullet P_{i}$ for all i, j. integrability
If all poles are of order at most 1, the system is Fuchsian. To arrive at a Fuchsian form, one might need a gauge transform. Wasow's method

Construction of a Pfaffian system IBP reduction with Laporta's algorithm

$$
\begin{gathered}
\partial^{a} \\
a \text { in } \partial^{a} \\
\partial^{a} Q_{i}=0 \text { in } R_{n} / R_{n} I \\
\mathbb{C}(x) \text {-basis of } R_{n} / R_{n} I
\end{gathered}
$$

Feynman integrals

propagator powers

IBP identities
set of master integrals

1. V. Chestnov, F. Gasparotto, M. K. Mandal, P. Mastrolia, S.-J. Matsubara-Heo, H. J. Munch, N. Takayama. Macaulay matrix for Feynman integrals: Linear relations and intersection numbers. J. High Energy Phys., 187(2022), 2022.
2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV. Interscience Publishers John Wiley \& Sons, Inc., New York-London- Sydney, 1965.

The SST algorithm

Input: A regular holonomic D_{n}-ideal I, its small Gröbner fan Σ in \mathbb{R}^{n}, a weight vector $w \in \mathbb{R}^{n}$ that is generic for I, and the desired order $k+1 \in \mathbb{N}$.
(1) Determine a Gröbner basis $G=\left\{g_{1}, \ldots, g_{d}\right\}$ of I with respect to w.
(2) Write each $g \in G$ as $x^{\alpha} g=f-h$ with $\alpha \in \mathbb{Z}^{n}$ such that $f \in \mathbb{K}\left[\theta_{1}, \ldots, \theta_{n}\right]$ and $h \in \mathbb{K}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ with $\operatorname{ord}_{(-w, w)}(h)<0$.
(3) Compute the indicial ideal $\operatorname{ind}_{w}(I)$ and its rank(I) many solutions. They are the form $x^{A} \log (x)^{B}$ with $A \in V\left(\right.$ ind $\left._{w}(I)\right)$. For each starting of these monomials, carry out Step 4.
(4) Assume the partial solution

$$
F_{k}(x)=x^{A} \cdot \sum_{0 \leq p \cdot w \leq k, p \in C_{\mathbb{Z}}^{*}} c_{p x^{p}} \log (x)^{b} .
$$

is known. Solve the linear system

$$
\left(f_{1}, \ldots, f_{d}\right) \bullet E_{k+1}(x)=\left(h_{1}-f_{1}, \ldots, h_{d}-f_{d}\right) \bullet F_{k}(x) \bmod w \text {-weight } k+2
$$

for $E_{k+1} \in \sum_{p \cdot w=k+1, p \in C_{\mathbb{Z}}^{*}} L_{p}^{\prime}$ of w-weight $k+1$. Adding E_{k+1} to F_{k} lifts F_{k} to F_{k+1}.
L_{p}^{\prime} the subspace of $L_{p}=x^{A} \sum_{0 \leq b_{i} \leq \operatorname{rank}(I)} \mathbb{K} \cdot x^{p} \log (x)^{b}$ spanned by monomials $\notin \operatorname{Start} \prec_{w}(I)$
Output: The canonical series solutions of I with respect to w, truncated at w-weight $k+1$.
M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

SST algorithm: a hypergeometric example

Consider the D-ideal I generated by $P=\theta(\theta-3)-x(\theta+a)(\theta+b)$.
(1) I is holonomic of rank $\operatorname{ord}_{(0,1)}(P)=2$.
(2) Gröbner fan of I : two maximal cones $\pm \mathbb{R} \geq 0$.
(3) For the weight $w=1, \operatorname{in}_{(-w, w)}(I)=\langle\theta(\theta-3)\rangle=\operatorname{ind}_{w}(I)$.
(4) Exponents of $I: V\left(\operatorname{ind}_{w}(I)\right)=\{0,3\}$. starting monomials $x^{0}=1$ and x^{3}
(5) Choose x^{3} as starting monomial, $L_{p}=\mathbb{C} \cdot\left\{x^{p+3}, x^{p+3} \log (x)\right\} . x^{3} \sum_{p} c_{p, 1} x^{p}+c_{p, 2} x^{p} \log (x)$
(6) Write $P=f-h$, where $f=\theta(\theta-3)$ and $h=x(\theta+a)(\theta+b)$. Action of θ on L_{p} :

$$
\theta \bullet x^{p+3}=(p+3) x^{p+3} \quad \text { and } \quad \theta \bullet\left(x^{p+3} \log (x)\right)=x^{p+3}+(p+3) x^{p+3} \log (x)
$$

Thus, the matrix of the operator θ in the basis $\left\{x^{p+3}, x^{p+3} \log (x)\right\}$ is

$$
\left[\begin{array}{cc}
p+3 & 1 \\
0 & p+3
\end{array}\right]
$$

(7) Let $c_{p, 1}$ and $c_{p, 2}$ be the coefficients of x^{p+3} and $x^{p+3} \log (x)$ in the power series expansion.

Then we can write our operators as matrices, and our recurrence as

$$
\left[\begin{array}{ll}
p & 1 \\
0 & p
\end{array}\right]\left[\begin{array}{cc}
p+3 & 1 \\
0 & p+3
\end{array}\right]\left[\begin{array}{l}
c_{p, 1} \\
c_{p, 2}
\end{array}\right]=\left[\begin{array}{cc}
p-a+2 & 1 \\
0 & p-a+2
\end{array}\right]\left[\begin{array}{cc}
p-b+2 & 1 \\
0 & p-b+2
\end{array}\right]\left[\begin{array}{l}
c_{p-1,1} \\
c_{p-1,2}
\end{array}\right]
$$

with initial values $c_{0,1}=1, c_{0,2}=0$. Solving the recurrence yields

$$
c_{p, 1}=0 \quad \text { and } \quad c_{p, 2}=\frac{(a+3)_{p}(b+3)_{p}}{(1)_{p}(4)_{p}} .
$$

[^0]: M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

[^1]: M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer, 2000.

