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Motivation

Aim: exploit algebraic geometry behind Feynman integrals

⇧ extraction of properties of Feynman integrals from their PDEs

⇧ algorithmic computation of series solutions of PDEs by algebraic methods

⇧ evaluation of Feynman integrals

⇧ providing a dictionary between algebraic analysis and high energy physics
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Linear PDEs through an algebraic lens

Definition

The Weyl algebra is obtained from the free algebra over C

D := C[x1, . . . , xn]h@1, . . . , @ni

by imposing the following relations. All generators commute, except @i and xi :

[@i , xi ] = @ixi � xi@i = 1 for i = 1, . . . , n.

From PDEs to D-ideals and vice versa

⇧ D gathers linear di↵erential operators with polynomial coe�cients

P =
X

↵,� 2Nn

c↵,�x
↵@� , c↵,� 2 C  PDE: P • f (x1, . . . , xn) = 0

Example: P = @2 � x 2 D encodes Airy’s equation f 00(x)� x · f (x) = 0 .

⇧ left D-ideals encode systems of linear PDEs
operations with D-ideals: integral transforms, restrictions, push forward, . . .
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Holonomic functions

One variable
A function f (x) is holonomic if there exists P 2 D that annihilates f , i.e., P • f = 0.
Multivariate case: f (x1, . . . , xn) is holonomic if AnnD(f ) is a “holonomic” D-ideal.

Examples: Feynman integrals, hypergeometric, periods, Airy, some probability distributions, . . .

Denote by Rn = C(x1, . . . , xn)h@1, . . . , @ni the rational Weyl algebra.

Theorem (Cauchy–Kovalevskaya–Kashiwara)

Let I be a holonomic D-ideal. The C-vector space of holomorphic solutions to I on a
simply connected domain in Cn outside the singular locus of I has finite dimension

rank(I ) = dimC(x1,...,xn) (Rn/RnI ) .

) A holonomic function is encoded by finite data!

Singularities

D-ideals can be regular singular or irregular singular .

Univariate case: read from growth behavior of general solution near singular points
Example: ⇧ log(x) moderate growth at x = 0 ⇧ exp(1/x) essential singularity at x = 0
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Running example

Variables: x1 = |p1|2 , x2 = |p2|2 , x3 = |p1 + p2|2.

The D-ideal I3(c0, c1, c2, c3)

Consider I3(c0, c1, c2, c3) = hP1,P2,P3i ⇢ D3

arising from conformal invariance.
dilatations + conformal boosts

P1 = 4(x1@
2
1 � x3@

2
3) + 2(2 + c0 � 2c1)@1 � 2(2 + c0 � 2c3)@3 ,

P2 = 4(x2@
2
2 � x3@

2
3) + 2(2 + c0 � 2c2)@2 � 2(2 + c0 � 2c3)@3 ,

P3 = (2c0 � c1 � c2 � c3) + 2(x3@3 + x2@2 + x1@1) .

Parameters: c0 = d spacetime dimension c1, c2, c3 conformal weights

Choice: I3 := I3(4, 2, 2, 2) b= conformal �4-theory in 4 spacetime dimensions

I3 is regular singular, rank(I3) = 4

⌫2, k + p1 ⌫3, k + p1 + p2

⌫1, k
p1

p2

p3

One-loop triangle Feynman diagram
with massless propagators and
massive external particles.

Remark: The D-ideal I3 is the restriction of a GKZ system.

L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019. 4/ 12



Initial forms

Principal symbol (n = 1)

in(0,1)(x@ � x2) = x⇠ is the part of maximal (0, 1)-weight @  ⇠

Several variables: in(0,1)(x1@1 + x2@2 + 1) = x1⇠1 + x2⇠2 in general, not a monomial

Algebraically

⇧ The characteristic ideal of a D-ideal I is

in(0,1)(I ) = h in(0,1)(P)|P 2 I i ⇢ C[x1, . . . , xn][⇠1, . . . , ⇠n] .

⇧ The characteristic variety of I is

Char(I ) = V (in(0,1)(I )) =
�
(x , ⇠) | p(x , ⇠) = 0 for all p 2 in(0,1)(I )

 
⇢ C2n .

⇧ The singular locus Sing(I ) of I is the vanishing set of the ideal
�
in(0,1)(I ) : h⇠1, . . . , ⇠ni(1)

�
\ C[x1, . . . , xn] . saturation + elimination

Examples
1 For I = hx2@ + 1i ⇢ D, in(0,1)(I ) = hx2⇠i and Sing(I ) = V (x) = {0}. C · exp(1/x)

2 The characteristic ideal of I = hx1@2, x2@1i ⇢ D2 is the C[x1, x2, ⇠1, ⇠2]-ideal
hx1⇠2, x2⇠1, x1⇠1 � x2⇠2, x2⇠22 , x

2
2 ⇠2i and Sing(I ) = V (x1, x2) ⇢ C2. C · 1
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Gröbner deformations

Weights of the form (�w ,w), w = (w1, . . . ,wn) 2 Rn

⇧ The w-weight of c↵,�x
↵@� is �w · ↵+ w · � .

⇧ The initial form of P =
P

c↵,�x
↵@� is the

subsum of all terms of maximal w -weight.

Initial and indicial ideal (with respect to w)

⇧ The initial ideal of I is the D-ideal
inw (I ) = h in(�w,w)(P)|P 2 I i ⇢ D .

⇧ The indicial ideal of I is the C[✓1, . . . , ✓n]-ideal
indw (I ) = Rn · in(�w,w)(I ) \ C[✓1, . . . , ✓n] . ✓i = xi@i the i-th Euler operator
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v1 = (1, 0,�1)

⇢1
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⇢2 ⇢3

C1

C2

C3

1

1

�1

�1

Small Gröbner fan of I3 ⇢ D,
here drawn in R3

w/R(1, 1, 1).

The zeroes of indw (I ) in Cn are the exponents of I .
The starting monomials of solutions to I will be of the form x

A log(x)B with A 2 V (indw (I )) .

Pipeline: from I to starting terms of series solutions

Dn-ideal I
w2Rn

 in(�w,w)(I )  indw (I ) ⇢ C[✓1, . . . , ✓n]
V (indw (I )) xA log(x)B
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Canonical series solutions

Aim: Solutions to I of the form Fk(x) = xA ·
P

0p·wk, p2C
⇤
Z ,

0bj<rank(I )

cpb x
p log(x)b .

Initial series
The w-weight of a monomial xA log(x)B is the real part of w ·A. The initial series inw (f )
of a function f =

P
A,B cABx

A log(x)B is the subsum of all terms of minimal w -weight.

Proposition

If I is regular holonomic and w a generic weight for I , there exist rank(I ) many canonical
series solutions of I which lie in the Nilsson ring Nw (I ) of I with respect to w ,

Nw (I ) := CJCw (I )
⇤
ZK[xe

1

, . . . , xe
r

, log(x1), . . . , log(xn)] .

⇧ Cw (I )⇤ the dual cone of the Gröbner cone of w ⇧ Cw (I )⇤Z = Cw (I )⇤ \ Zn

⇧ {e1, . . . , er} the exponents of I

Monomial ordering �w refining w -weight: The number of solutions to I with starting
monomial of the form xA log(x)B is the multiplicity of A as zero of indw (I ).

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Di↵erential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 7/ 12



The SST algorithm

Theorem (Saito–Sturmfels–Takayama)
Let I be a regular holonomic Q[x1, . . . , xn]h@1, . . . , @ni-ideal and w 2 Rn generic for I .
Let I be given by a Gröbner basis for w . There exists an algorithm which computes all
terms up to specified w -weight in the canonical series solutions to I with respect to �w .

Procedure

Input: A regular holonomic Dn-ideal I , its small Gröbner fan ⌃ in Rn, a weight vector
w 2 Rn that is generic for I , and the desired order k 2 N.

. . . for each starting monomial xA log(x)B : solving linear system modulo desired w -weight
for vector spaces of monomials of same w -weight. recurrence relations

Output: The canonical series solutions of I with respect to w , truncated at w -weight k.

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Di↵erential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 8/ 12



Starting monomials for I3

The singular locus of I3 is

Sing (I3) = V (x1x2x3 · �) ⇢ C3.

Vanishing locus of the Källén polynomial

� = x2
1 + x2

2 + x2
3 � 2(x1x2 + x1x3 + x2x3)

+ coordinate hyperplanes {xi = 0}

Initial and indicial ideal for w = (�1, 0, 1) 2 C1

⇧ in(�w,w)(I3) = hx1@1 + x2@2 + x3@3 + 1, x2@2
2 + @2, x3@2

3 + @3 i ⇢ D3

⇧ indw (I3) = R3 · in(�w,w)(I )\C[✓1, ✓2, ✓3] = h✓1 + ✓2 + ✓3 +1, ✓22, ✓
2
3i ⇢ C [✓1, ✓2, ✓3]

Exponents of I : V (indw (I3)) = {(�1, 0, 0)} . b= x
�1
1 x

0
2 x

0
3 = 1/x1

Change of variables: y1 = x1 , y2 = x2/x1 , y3 = x3/x1 .

Starting monomials of solutions read from primary decomposition of indw (I )

⇧ 1/y1 ⇧ 1/y1 log(y2) ⇧ 1/y1 log(y3) ⇧ 1/y1 log(y2) log(y3)
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Canonical series solutions of I3

Lifting the starting monomials here displayed for f1, f2, f3 for w -weight 0 to 4

f̃1(y2, y3) = 1 + y2 + y3 + y
2
2 + 4y2y3 + y

2
3 + y

3
2 + 9y2

2 y3 + y
4
2 + · · · ,

f̃2(y2, y3) = log(y2) + log(y2)y2 + (2 + log(y2))y3 + log(y2)y
2
2 + (4 + 4 log(y2))y2y3

+ (3 + log(y2))y
2
3 + (log(y2))y

3
2 + (6 + 9 log(y2))y

2
2 y3 + log(y2)y

4
2 + · · · ,

f̃3(y2, y3) = log(y3) + (2 + log(y3))y2 + log(y3)y3 + (3 + log(y3))y
2
2

+ (4 + 4 log(y3))y2y3 + log(y3)y
2
3 +

✓
11

3
+ log(y3)

◆
y
3
2

+ (15 + 9 log(y3))y
2
2 y3 +

✓
25

6
+ log(y3)

◆
y
4
2 + · · · .

Then fi (x1, x2, x3) = 1/x1 · f̃i (y2, y3) are canonical series solutions to I3 . (truncated)

Code

⇧ in Sage for the bivariate case: https://mathrepo.mis.mpg.de/DModulesFeynman/

⇧ Macaulay2 package HolonomicSystems M. Sayrafi, C. Berkesch, A. Leykin, H. Tsai
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Truncation with respect to w -weight

f (x1, . . . , xn) general solution of a regular holonomic D-ideal I

Capturing the weight vector via an auxiliary variable

Choose a generic weight w 2 Rn for I . Set

fw (t, x1, . . . , xn) := f (tw1x1, . . . , twnxn) .

Merging with canonical series solutions

1 From I , derive a Fuchsian system for fw (t, x1, . . . , xn).

2 Solve the system via the path-ordered exponential formalism.

3 Compute the asymptotic expansion of fw (t, x) around t = 0:

fw (t, x) =
X

k�0

mmaxX

m=0

ck,m(x) t
k log(t)m .

By construction, ck,m(x) has w -weight k .

4 Truncate the expansion at tk and evaluate at t = 1. Nota bene: fw |t=1 ⌘ f .

1. F. Brown. Iterated Integrals in Quantum Field Theory. In 6th Summer School on Geometric and Topological

Methods for Quantum Field Theory, pages 188–240, 2013.
2. W. Wasow. Asymptotic expansions for ordinary di↵erential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. 11/ 12



Conclusion

In a nutshell

1 D-ideals encode crucial properties of their solution functions
e.g. Feynman integrals, arbitrary loop order, irrespective of whether polylogarithmic, etc.

2 algorithmic computation of truncated series solutions by algebraic methods
no gauge transform required

3 evaluation of solution functions to desired w -weight
freedom in choosing weight vector w

4 dictionary algebra–physics
computing series solutions, Pfa�an system vs. Laporta’s algorithm

Thank you for your attention!

J. Henn, E. Pratt, A.-L. S., and S. Zoia. D-Module Techniques for Solving Di↵erential Equations in the Context
of Feynman Integrals. Preprint arXiv:2303.11105, 2023. 12/ 12

https://arxiv.org/abs/2303.11105


Solutions to I3

The solution space of I3. . .

. . . is spanned by the triangle integral

J triangle
d ;⌫1,⌫2,⌫3

=
R
Rd

1
(�|k|2)⌫1 (�|k+p1|2)⌫2 (�|k+p1+p2|2)⌫3

dd
k

i⇡
d

2

and its analytic continuations. rank(I3) = 4

⌫2, k + p1 ⌫3, k + p1 + p2

⌫1, k
p1

p2

p3

One-loop triangle Feynman diagram
with massless propagators and
massive external particles.

Unitary exponents ⌫1 = ⌫2 = ⌫3 = 1, d = 4:

f1(x1, x2, x3) = J
triangle
4;1,1,1 (x1, x2, x3) ,

f2(x1, x2, x3) =
1
p
�
log

 
x1 � x2 � x3 �

p
�

x1 � x2 � x3 +
p
�

!
,

f3(x1, x2, x3) =
1
p
�
log

 
x2 � x1 � x3 �

p
�

x2 � x1 � x3 +
p
�

!
,

f4(x1, x2, x3) =
1
p
�
,

where � = x2
1 + x2

2 + x2
3 � 2(x1x2 + x1x3 + x2x3) is the Källén function.

13/ 12



The conformal group

z =
�
z
0, z1, . . . , zd�1

�>
vector of d-dimensional spacetime coordinates

z1 · z2 := z
>
1 · g · z2 g = diag(1,�1, . . . ,�1) the metric tensor

p1, . . . , pn momentum vectors

Translations z �! z + ✏, ✏ 2 Rd

(Proper) Lorentz transformations z �! ⇤ · z, ⇤ 2 SO(1, d � 1)
Dilatations z �! e! z, ! 2 R

Conformal boosts z �!
z � |z|2 ✏

1� 2 z · ✏+ |z|2|✏|2
, ✏ 2 Rd

Poincaré group symmetry group of Einstein’s theory of special relativity
conformal group Poincaré + dilatations + conformal boosts

Invariance under. . .
⇧ translations implies momentum conservation

⇧ Lorentz transformation implies dependency on Mandelstam invariants pk · p` only

Generators in position space to momentum space via Fourier transform

⇧ dilatations: Dn = �i
P

n

k=1 (zk · @zk + ck )

⇧ conformal boosts: Kn = i
P

n

k=1

⇥
|zk |2@zk � 2 zk (zk · @zk )� 2 ck zk

⇤

Running example: n = 3, momenta p1, p2, p3, variables xi = |pi |2

⇧ P3 stems from cD3 ⇧ P1,P2 stem from cK3
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Systems in matrix form

⇧ I a holonomic Dn-ideal of rank m = rank(I ), f 2 Sol(I )
⇧ 1, s2, . . . , sm a C(x)-basis of Rn/RnI standard monomials for a Gröbner basis of I

Pfa�an system

Set F = (f , s2 • f , . . . , sm • f )>. There exist P1, . . . ,Pn 2 C(x1, . . . , xn)m⇥m for which

@i • F = Pi · F .

The matrices Pi fulfill PiPj � PjPi = @i • Pj � @j • Pi for all i , j . integrability

If all poles are of order at most 1, the system is Fuchsian. To arrive at a Fuchsian form,
one might need a gauge transform. Wasow’s method

Construction of a Pfa�an system IBP reduction with Laporta’s algorithm

@a Feynman integrals

a in @a propagator powers

@aQi = 0 in Rn/RnI IBP identities

C(x)-basis of Rn/RnI set of master integrals

1. V. Chestnov, F. Gasparotto, M. K. Mandal, P. Mastrolia, S.-J. Matsubara-Heo, H. J. Munch, N. Takayama.
Macaulay matrix for Feynman integrals: Linear relations and intersection numbers. J. High Energy Phys.,
187(2022), 2022.
2. W. Wasow. Asymptotic expansions for ordinary di↵erential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London- Sydney, 1965. 15/ 12



The SST algorithm

Input: A regular holonomic Dn-ideal I , its small Gröbner fan ⌃ in Rn, a weight vector w 2 Rn

that is generic for I , and the desired order k + 1 2 N.

1 Determine a Gröbner basis G = {g1, . . . , gd} of I with respect to w .

2 Write each g 2 G as x
↵
g = f � h with ↵ 2 Zn such that f 2 K[✓1, . . . , ✓n] and

h 2 K[x±1
1 , . . . , x±1

n ]h@1, . . . , @ni with ord(�w,w)(h) < 0.

3 Compute the indicial ideal indw (I ) and its rank(I ) many solutions. They are the form x
A log(x)B

with A 2 V (indw (I )). For each starting of these monomials, carry out Step 4.

4 Assume the partial solution

Fk (x) = x
A ·

X

0p·wk, p2C⇤
Z

cpbx
p log(x)b .

is known. Solve the linear system

(f1, . . . , fd ) • Ek+1(x) = (h1 � f1, . . . , hd � fd ) • Fk (x) mod w -weight k + 2

for Ek+1 2
P

p·w=k+1, p2C⇤
Z
L
0
p of w -weight k + 1. Adding Ek+1 to Fk lifts Fk to Fk+1.

L
0
p the subspace of Lp = x

A
P

0birank(I ) K·xp log(x)b spanned by monomials /2 Start�w
(I )

Output: The canonical series solutions of I with respect to w , truncated at w -weight k + 1.

M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Di↵erential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 16/ 12



SST algorithm: a hypergeometric example

Consider the D-ideal I generated by P = ✓(✓ � 3)� x(✓ + a)(✓ + b) .

1 I is holonomic of rank ord(0,1)(P) = 2.

2 Gröbner fan of I : two maximal cones ±R�0.

3 For the weight w = 1, in(�w,w)(I ) = h ✓(✓ � 3) i = indw (I ).

4 Exponents of I : V (indw (I )) = {0, 3}. starting monomials x
0 = 1 and x

3

5 Choose x
3 as starting monomial, Lp = C · {xp+3, xp+3 log(x)}. x

3P
p
cp,1x

p + cp,2x
p log(x)

6 Write P = f � h, where f = ✓(✓ � 3) and h = x(✓ + a)(✓ + b). Action of ✓ on Lp :

✓ • x
p+3 = (p + 3)xp+3 and ✓ • (xp+3 log(x)) = x

p+3 + (p + 3)xp+3 log(x) .

Thus, the matrix of the operator ✓ in the basis {xp+3, xp+3 log(x)} is

p + 3 1
0 p + 3

�
.

7 Let cp,1 and cp,2 be the coe�cients of xp+3 and x
p+3 log(x) in the power series expansion.

Then we can write our operators as matrices, and our recurrence as

p 1
0 p

� 
p + 3 1
0 p + 3

� 
cp,1
cp,2

�
=


p � a+ 2 1

0 p � a+ 2

� 
p � b + 2 1

0 p � b + 2

� 
cp�1,1
cp�1,2

�

with initial values c0,1 = 1, c0,2 = 0 . Solving the recurrence yields

cp,1 = 0 and cp,2 =
(a+3)p(b+3)p

(1)p(4)p
.
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