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Aim: exploit algebraic geometry behind Feynman integrals
© extraction of properties of Feynman integrals from their PDEs
< algorithmic computation of series solutions of PDEs by algebraic methods
< evaluation of Feynman integrals

o providing a dictionary between algebraic analysis and high energy physics
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Linear PDEs through an algebraic lens

Definition
The Weyl algebra is obtained from the free algebra over C
D = (C[Xl7 coo ,Xn]<817 ceey 8,,)
by imposing the following relations. All generators commute, except 0; and x;:

[0i,x]] = Oixi —x;0p =1 for i=1,... n

From PDEs to D-ideals and vice versa

o D gathers linear differential operators with polynomial coefficients

P= Y casx?d, cap€C ~ PDE|Pef(xi,....x) = 0|
«,B €N

Example: P =3’ —x € D encodes Airy's equation f”(x) —x-f(x)=0.
o left D-ideals encode systems of linear PDEs
operations with D-ideals: integral transforms, restrictions, push forward, ...
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Holonomic functions

One variable

A function f(x) is holonomic if there exists P € D that annihilates f, i.e., Pe f =0.
Multivariate case: f(xi,...,xn) is holonomic if Annp(f) is a “holonomic” D-ideal.

Examples: Feynman integrals, hypergeometric, periods, Airy, some probability distributions, ...

Denote by R, = C(xi,...,%n){01,...,0n) the rational Weyl algebra.

Theorem (Cauchy—Kovalevskaya—Kashiwara)

Let / be a holonomic D-ideal. The C-vector space of holomorphic solutions to / on a
simply connected domain in C" outside the singular locus of I has finite dimension

rank(/) = dimg(y,....x,) (Ra/Ral) .

= A holonomic function is encoded by finite data!

Singularities
D-ideals can be regular singular or irregular singular .

Univariate case: read from growth behavior of general solution near singular points
Example: © log(x) moderate growth at x =0 © exp(1l/x) essential singularity at x =0
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Running example

Variables: X1 = |p1|27 Xp = |p2|2, X3 = |p1 + p2|2.

. va, k4 p1 v3, k+p1+ p2
The D-ideal k(co, c1, 2, c3)

Consider /3(Co, ci, C2, C3) = <P1, Pz, P3> C D3 Pt ps

arising from conformal invariance. ) )
One-loop triangle Feynman diagram

dilatations + conformal boosts with massless propagators and
massive external particles.

Pi = 4(x107 — x303) 4+ 2(2 + co — 2c1)D1 — 2(2 4 o — 2¢3)8s,
Py = 4(x20% — x303) 4+ 2(2 + co — 20)02 — 2(2 + o — 2¢3)s,
P; = (2C0 —C — C — C3) =+ 2(X383 + x00h + X181) .

Parameters: ¢y = d spacetime dimension c1, ¢2, c3 conformal weights
Choice: /3= h(4,2,2,2) = conformal ¢*-theory in 4 spacetime dimensions

I3 is regular singular, rank(l3) = 4

Remark: The D-ideal I is the restriction of a GKZ system.

L. de la Cruz. Feynman integrals as A-hypergeometric functions. J. High Energy Phys., 123(2019), 2019.  4/12



Initial forms

Principal symbol (n = 1)
in(o,1)(x0 — x*) = x€ is the part of maximal (0, 1)-weight 9 - ¢
Several variables: in(o,l)(Xlal + x00r + 1) = x1&1 + x& in general, not a monomial

Algebraically

¢ The characteristic ideal of a D-ideal [/ is
no,)(1) = (ingn(P)IP €l) C Clx,...,xn[&1, ..., &n]-

© The characteristic variety of I'is

Char(l) = V(inp (1) = {(x &) | p(x,&) =0 forall p €ing } c ™.
o The singular locus Sing(/) of / is the vanishing set of the ideal

(ino,1)(1) : (€1, &) N Clxt,...,xa] . saturation + elimination

Examples
® For I =(x*0+1) C D, ingy(l) = (x’€) and Sing(/) = V(x) = {0}. C-exp(1/x)
® The characteristic ideal of | = (x102,x01) C D> is the C[xi, x2, {1, &2]-ideal
(x162, x0&1, X161 — X2€2, X263, X3&) and Sing(l) = V(xi,x) C C2. C-1
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Grobner deformations

) v = (—1,2,-1)
Weights of the form (—w,w), w = (wi,...,ws) €R" _ _
o The w-weight of ¢, 5x*0” is —w-a+w-j3. T ¢
o The initial form of P =3 c. sx*9” is the - ale
subsum of all terms of maximal w-weight. w, vi =(1,0,-1)
— e
Initial and indicial ideal (with respect to w) < Ps

¢ The initial ideal of / is the D-ideal 3
inw(l) _ (in(_w,w)(P)|P c /) cD. Small Grobner fan of 1C D

here drawn in R3 /R(1, ,1)1
¢ The indicial ideal of / is the C[fs, ..., 0,]-ideal
indy (/) = Rn-in—w,w)(I) N Cl[b1,...,60s] . 0; = x0; the i-th Euler operator

The zeroes of indy (/) in C" are the exponents of /.
The starting monomials of solutions to / will be of the form x*log(x)B with A € V(indw(1)).

Pipeline: from [ to starting terms of series solutions

weR"

Dyideal I "X in_yuy(I) ~ indw(l) € Clor,...,0,] " xAlog(x)B
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Canonical series solutions

Aim: Solutions to / of the form Fi(x) = x*- > o<p-w<k, pecy, Cob X’ log(x)° .
0< b;<rank(/)
Initial series

The w-weight of a monomial x* log(x)? is the real part of w - A. The initial series in, (f)
of a function f = 3", 5 cagx”log(x)® is the subsum of all terms of minimal w-weight.

Proposition

If I is regular holonomic and w a generic weight for /, there exist rank(/) many canonical
series solutions of / which lie in the Nilsson ring N, (/) of | with respect to w,

N (1) = CICu(Z]Ix ..., x log(xa), . .., log(xn)]

o Cw(l)* the dual cone of the Grdbner cone of w o Cu(l); = Cu(l)*nZ"
o {el,..., e} the exponents of /

Monomial ordering <, refining w-weight: The number of solutions to | with starting
monomial of the form x* log(x)? is the multiplicity of A as zero of ind (/).

M. Saito, B. Sturmfels, and N. Takayama. Grébner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 7/12



The SST algorithm

Theorem (Saito—Sturmfels—Takayama)

Let | be a regular holonomic Q[xi,...,xn]{(01,...,0n)-ideal and w € R" generic for I.
Let / be given by a Grobner basis for w. There exists an algorithm which computes all
terms up to specified w-weight in the canonical series solutions to | with respect to <.

Procedure

Input: A regular holonomic D,-ideal /, its small Grébner fan X in R", a weight vector
w € R" that is generic for /, and the desired order k € N.

... for each starting monomial x* log(x)8: solving linear system modulo desired w-weight
for vector spaces of monomials of same w-weight. recurrence relations

Output: The canonical series solutions of / with respect to w, truncated at w-weight k.

M. Saito, B. Sturmfels, and N. Takayama. Grébner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 8/12



Starting monomials for /3

The singular locus of I3 is
Sing (k) = V (xixaxs - A) C C3.

Vanishing locus of the Kallén polynomial

A=x} +x3 +x3 — 2(x1x2 + x1x3 + x2X3)

+ coordinate hyperplanes {x; = 0}

Initial and indicial ideal for w = (—1,0,1) € G

o incwwy)(B) = (x101 + x02 + x303 + 1, X203 + 02, x305 + 03) C D3
O indW(I3) = R3-in(_w7w)(l)ﬂ(C[91792,03] = <91 +02+93+1, 0%7 0§> C (C[91,02,03]

Exponents of /: | V(indw(h)) = {(-1,0,0)}.| = x ¢ = 1/x

Change of variables: yi =x1, Y2 =x/x1, y3= x3/xi.

Starting monomials of solutions  read from primary decomposition of ind,, (1)
o 1/ o 1/ylog(y2) o 1/yilog(ys) o 1/y1log(y2)log(ys)
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Canonical series solutions of /3

Lifting the Starting monomials here displayed for fi, f, f; for w-weight 0 to 4

Aly2ys) = 1+y2+ys+y3 +4voys+y3 +y3 +9v3ys+y3 + -+,
B(y2,y3) = log(y2) + log(y2)y2 + (2 + log(y2))y3 + log(y2)y3 + (4 + 4 log(y2))y2ys

+ (3 + log(y2))y3 + (log(y2))y3 + (6 + 9log(y2))ydys + log(y2)ys + -- -,
B(y2,y3) = log(y3) + (2 + log(y3))y2 + log(ys)ys + (3 + log(y3))y3

11
+ (4 + 4log(y3))y2ys + log(ys)y3 + (; + |°g(y3)) 3

25
+ (15 + 9log(y3))y3ys + (? + Iog(y3)) vi+

Then fi(x1,x,x3) = 1/x1 - ﬁ(yg,yg) are canonical series solutions to /5. (truncated)

Code

¢ in Sage for the bivariate case: https://mathrepo.mis.mpg.de/DModulesFeynman/

© Macaulay?2 package HolonomicSystems M. Sayrafi, C. Berkesch, A. Leykin, H. Tsai
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Truncation with respect to w-weight

f(x1,...,xs) general solution of a regular holonomic D-ideal /
Capturing the weight vector via an auxiliary variable

Choose a generic weight w € R" for /. Set

fo(t, X1,y xn) = (" x1, ..., t""xp) .

Merging with canonical series solutions
® From /, derive a Fuchsian system for f,,(t,x1, ..., ).
@® Solve the system via the path-ordered exponential formalism.

® Compute the asymptotic expansion of f,(t,x) around t = 0:

Mmax

fu(t,x) = DD cim(x) tlog(t)".

k>0 m=0

By construction, ck,m(x) has w-weight k.

® Truncate the expansion at tX and evaluate at t = 1.  Nota bene: fwle=1 = f.

1. F. Brown. lterated Integrals in Quantum Field Theory. In 6th Summer School on Geometric and Topological
Methods for Quantum Field Theory, pages 188-240, 2013.

2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. 11/12



Conclusion

In a nutshell

@ D-ideals encode crucial properties of their solution functions
e.g. Feynman integrals, arbitrary loop order, irrespective of whether polylogarithmic, etc.

@® algorithmic computation of truncated series solutions by algebraic methods
no gauge transform required

@® evaluation of solution functions to desired w-weight
freedom in choosing weight vector w

@ dictionary algebra—physics
computing series solutions, Pfaffian system vs. Laporta’s algorithm

Thank you for your attention!

J. Henn, E. Pratt, A.-L. S., and S. Zoia. D-Module Techniques for Solving Differential Equations in the Context
of Feynman Integrals. Preprint arXiv:2303.11105, 2023. 12/12
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Solutions to /3

The solution space of I5. ..

...is spanned by the triangle integral

Jtriangle 1 a9k vo, k+ p1 v3, k+ p1 + p2

diviva,vs T fRd (STkP)7T (= Tktp1 P72 (= [ktpitp2 )73 | 4

P1 P3
and its analytic continuations.  rank(l3) =4

One-loop triangle Feynman diagram
with massless propagators and
massive external particles.

Unitary exponents 11 =1, =13 =1, d = 4:

fi(x1,x2,x3) = Jﬁfiﬁ’{%’f(n, X2,X3),

f(x1, %2, x3) ! log =0 —x = VX

2(x1,x2,X3) = —= _—,
VA X1 —x —x3 + VA

A ) 1 o X —x1—x3 — VA

X1,X0,X3) = —= = = ",

ST Vo X2 —x1 —x3 + VA
1

51(X17X2,X3) = ﬁv

where X\ = x +x3 + X2 — 2(x1x2 + x1Xs + x2x3) is the Kallén function.
13/12



The conformal group

T . . . .
z=(0,2,...,297Y) vector of d-dimensional spacetime coordinates
712 =2z ‘g2 g = diag(1,—1,...,—1) the metric tensor
P1,.--,Pn momentum vectors

Translations z—>z+e ecRY
(Proper) Lorentz transformations z — A-z, A€ SO(1,d—1)
Dilatations z—eYz, weR
2

Z— |Z|T €

Conformal boosts z — é, ecRY
1-2z-e+|z|?|¢?
Poincaré group symmetry group of Einstein's theory of special relativity

conformal group  Poincaré + dilatations 4+ conformal boosts

Invariance under. . .
¢ translations implies momentum conservation

o Lorentz transformation implies dependency on Mandelstam invariants py - py only
Generators in position space  to momentum space via Fourier transform

o dilatations: Dn = —id> p_q (zk - Oz + k)

o conformal boosts: R, = iY.7_; [|2k[20z, — 22k (2 - 0z,) — 2 ck 2]
Running example: n =3, momenta p1, p2, p3, variables x; = |p;|?

o P3 stems from 35; o P1, P> stem from jﬁ;
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Systems in matrix form

o 1 a holonomic D,-ideal of rank m = rank(/), f € Sol(/)
©1,%,...,5m a C(x)-basis of R,/R,l  standard monomials for a Grébner basis of /

Pfaffian system
Set F=(f,s28f,...,sn0f)". There exist Py,..., P, € C(x1,...,X,)™™ for which

|gieF = P-F.|

The matrices P; fulfill P;P; — P;P; = O; e P — 0; e P; for all i,j. integrability

If all poles are of order at most 1, the system is Fuchsian. To arrive at a Fuchsian form,
one might need a gauge transform.  Wasow's method

Construction of a Pfaffian system IBP reduction with Laporta’s algorithm

o7 Feynman integrals
ain 0° propagator powers
Qi =0in R,/Rnl IBP identities
C(x)-basis of Rn/Ral set of master integrals

1. V. Chestnov, F. Gasparotto, M. K. Mandal, P. Mastrolia, S.-J. Matsubara-Heo, H. J. Munch, N. Takayama.
Macaulay matrix for Feynman integrals: Linear relations and intersection numbers. J. High Energy Phys.,
187(2022), 2022.

2. W. Wasow. Asymptotic expansions for ordinary differential equations. Pure and Applied Mathematics, Vol. XIV.
Interscience Publishers John Wiley & Sons, Inc., New York-London- Sydney, 1965. 15/12



The SST algorithm

Input: A regular holonomic Dp-ideal [, its small Grébner fan X in R”, a weight vector w € R"
that is generic for /, and the desired order k +1 € N.
@ Determine a Grdbner basis G = {g1, ..., g4} of | with respect to w.
® Write each g € G as x*g = f — h with o € Z" such that f € Kl[6y,...,0,] and
heKix, ..., xi (01, . ., On) with ord(_,, ) (h) < 0.
® Compute the indicial ideal ind, (/) and its rank(/) many solutions. They are the form x* log(x)&
with A € V(indy (/)). For each starting of these monomials, carry out Step 4.

@ Assume the partial solution

Fe(x) = x*- Z CpoxP log(x)® .
0<p-w<k, peC;

is known. Solve the linear system
(fiy...,fq) @ Exp1(x) = (h1 — fi,..., hg — fy) ® Fi(x) mod w-weight k + 2
for Exi1 € Zp-w:k+1,p€€£ L, of w-weight k 4 1. Adding Ex;; to F lifts Fy to Fyy1.
L}, the subspace of L, = xA Zogbigrank(l) K-xP log(x)? spanned by monomials ¢ Start—, (/)

Output: The canonical series solutions of | with respect to w, truncated at w-weight k + 1.

M. Saito, B. Sturmfels, and N. Takayama. Grébner Deformations of Hypergeometric Differential Equations,
volume 6 of Algorithms and Computation in Mathematics. Springer, 2000. 16/12



SST algorithm: a hypergeometric example

Consider the D-ideal | generated by P = 6(0 —3) — x(0 + a)(0 + b) .

@ / is holonomic of rank ord(g 1)(P) = 2.
@® Grobner fan of /: two maximal cones +R>¢.
© For the weight w =1, in(_,, (1) = (0(6 —3)) = indw (/).
© Exponents of I: V(indw (1)) = {0,3}. starting monomials x* = 1 and x3
® Choose x3 as starting monomial, L, = C- {xP3, xP+3log(x)}. x3 2=p Cp1xP + cp 2xP log(x)
® Write P = f — h, where f = (0 — 3) and h = x(0 + a)(0 + b). Action of § on Lp:
OexP3 = (p+3)xP™3 and e (x"3log(x)) = xP*3 + (p+ 3)x" 3 log(x).
Thus, the matrix of the operator 6 in the basis {xP3, xP*3 log(x)} is
[p +3 1 }
0 p+3|°

@ Let cp1 and ¢, 2 be the coefficients of xP*3 and xPt3 log(x) in the power series expansion.
Then we can write our operators as matrices, and our recurrence as

p 1| |p+3 1 1| _|pP—a+2 1 p—b+2 1 Cp—1,1
0 p 0 p+3| [cp2| 0 p—a+2 0 p—b+2| |cp12
with initial values cg1 =1, g2 = 0 . Solving the recurrence yields

cp1 =0 and Cp2 = 7(#8:22;73),,
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