Bayesian Integrals on Toric Varieties

Michael Borinsky, Anna-Laura Sattelberger, Bernd Sturmfels, Simon Telen

Hypergeometric School 2023
Kobe University

August 18, 2023

What to expect

Aim

Computation of marginal likelihood integrals

$$
\int_{X_{>0}} p_{0}^{u_{0}} p_{1}^{u_{1}} \cdots p_{m}^{u_{m}} \Omega_{X}^{\text {prior }}
$$

for statistical models that are parameterized by a toric variety.

How?
Tropical sampling algorithms.

Outline

(1) Toric varieties and statistical models
(2) Toric varieties as probability spaces
(3) Tropical sampling

[^0]
Toric varieties and statistical models

Definition

A discrete statistical model taking $m+1$ states is a parameterized subset of the probability m-simplex

$$
\Delta_{m}=\left\{\left(p_{0}, \ldots, p_{m}\right) \mid p_{i} \in(0,1), \sum_{i=0}^{m} p_{i}=1\right\}
$$

Definition.

An algebraic variety X is toric if it contains a dense algebraic torus whose action on itself extends to X.

Normal toric varieties. . .
\ldots of dimension n are encoded by complete fans in \mathbb{R}^{n}.

Example: a coin model

$$
\begin{array}{ll}
X=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} & \text { homogeneous coordinates }\left(x_{0}: x_{1}\right),\left(s_{0}: s_{1}\right),\left(t_{0}: t_{1}\right) \\
X=X_{\Sigma} & \Sigma \text { the inner normal fan of }[0,1]^{3} \\
X_{>0} \widehat{=}(0,1)^{3} & \text { the positive part of } X
\end{array}
$$

Model: image of $X_{>0} \rightarrow \Delta_{m},(x, s, t) \mapsto\left(p_{\ell}(x, s, t)\right)_{\ell=0, \ldots, m}$,

$$
x=x_{0}, x_{1}=1-x, s=s_{0}, s_{1}=1-s, t=t_{0}, t_{1}=1-t
$$

$$
p_{\ell}=\binom{m}{\ell} \times s^{\ell}(1-s)^{m-\ell}+\binom{m}{\ell}(1-x) t^{\ell}(1-t)^{m-\ell}, \quad \ell=0,1, \ldots, m .
$$

probability for observing ℓ times head

Marginal likelihood integral

For uniform prior on $(0,1)^{3}$, data $u=\left(u_{0}, \ldots, u_{m}\right)$, the marginal likelihood integral is

$$
\mathcal{I}_{u}=\int_{X_{>0}} \underbrace{p_{0}^{u_{0}} \cdots p_{m}^{u_{m}}}_{=L_{u} \text { likelihood fct. }} \underbrace{\Omega_{X}^{\text {unif }}}_{\text {prior distribution }} .
$$

$u_{+}=u_{0}+\cdots+u_{m}$ many repetitions

Normal toric varieties

Example: complex projective plane

Σ the inner normal fan of $\Delta_{2}, V=\left(v_{1}\left|v_{2}\right| v_{3}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)$

$$
X_{\Sigma}=\mathbb{P}_{\mathbb{C}}^{2}=\left(\mathbb{C}^{3}\right)^{*} / \mathbb{C}^{*}=\left(\mathbb{A}_{\mathbb{C}}^{3} \backslash \mathcal{V}\left(x_{0}, x_{1}, x_{2}\right)\right) / \mathbb{G}_{m}^{1}
$$

Homogeneous coordinates: ($x_{0}: x_{1}: x_{2}$)
Cox coordinates
Three affine charts: $\left\{x_{i} \neq 0\right\}$ one for each maximal cone

In general
Σ a complete fan in \mathbb{R}^{n}
$\diamond V=\left(v_{1}|\cdots| v_{k}\right)$
$\diamond \mathrm{Cl}(X)=\mathbb{Z}^{k} / \operatorname{im}\left(V^{\top}\right)$
$\diamond G=\operatorname{Hom}\left(\mathrm{Cl}(X), \mathbb{C}^{*}\right) \quad$ the characters of $\mathrm{Cl}(X)$
$\diamond S=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]=\bigoplus_{\gamma \in \mathrm{Cl}(X)} S_{\gamma} \quad$ Cox ring
$\diamond B=\left\langle\prod_{\rho \notin \sigma} x_{\rho} \mid \sigma \in \Sigma(n)\right\rangle \subset S \quad$ the irrelevant ideal
$\diamond X_{\Sigma}=\left(\mathbb{C}^{k} \backslash \mathcal{V}(B)\right) / G \quad$ the toric variety of Σ

Positive toric varieties

Setup

$$
\begin{array}{ll}
\Sigma & \text { the inner normal fan of a polytope } P \\
X{ }_{P} X_{\Sigma} & \text { the toric variety of } \Sigma \\
P^{\circ} & \text { the interior of } P
\end{array}
$$

Positive part of $X_{\Sigma}=\left(\mathbb{C}^{k} \backslash \mathcal{V}(B)\right) / G$
$\diamond \pi: \mathbb{C}^{k} \backslash \mathcal{V}(B) \longrightarrow\left(\mathbb{C}^{k} \backslash \mathcal{V}(B)\right) / G$ the projection
$\diamond \pi\left(\mathbb{R}_{>0}^{k}\right)=: X_{>0}$ the positive part of $X_{\Sigma} \quad X_{\geq 0}$ its Euclidean closure

Algebraic moment map

One identifies $X_{>0}$ and P° via the moment map

$$
X_{>0} \stackrel{\phi}{\simeq} \mathbb{R}_{>0}^{n} \stackrel{\varphi}{\simeq} P^{\circ},
$$

with φ the affine moment map

$$
\varphi(t)=\sum_{a \in \mathcal{V}(P)} \frac{c_{a} t^{a}}{q(t)} \cdot a, \quad q=\sum_{a \in \mathcal{V}(P)} c_{a} t^{a} \in \mathbb{R}_{>0}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right] .
$$

$X_{>0}$ as probability space

Definition

The canonical form of $\left(X, X_{\geq 0}\right)$ is the meromorphic differential n-form

$$
\Omega_{X}=\sum_{I \subset \Sigma(1),|| |=n} \operatorname{det}\left(V_{l}\right) \bigwedge_{\rho \in I} \frac{\mathrm{~d} x_{\rho}}{x_{\rho}}
$$

on X. The pair $\left(X, X_{\geq 0}\right)$ is a positive geometry.

Proposition

The pullback of $\mathrm{d} y_{1} \wedge \cdots \wedge \mathrm{~d} y_{n}$ on P° under the moment map $X_{>0} \rightarrow P^{\circ}$ is a positive rational function r times Ω_{x}. We obtain $r(x)$ from | det | of the toric Hessian of $\log (q(t))$

$$
H(t)=\left(\theta_{i} \theta_{j} \bullet \log (q(t))\right)_{i, j} \quad \theta_{i}=t_{i} \partial_{t_{i}}
$$

by replacing t_{1}, \ldots, t_{n} with Laurent monomials in x_{1}, \ldots, x_{k} given by the rows of V.
Observation: Scaled by a rational function $\frac{f}{g}, \Omega_{X}$ gives a probability measure on $X_{>0}$! Integrals of interest: $\mathcal{I}_{f, g}=\int_{X>0} \frac{f}{g} \Omega_{X} \quad f, g \in S$ homogeneous of the same degree

Toric sector decomposition

Definition

The tropical approximation of $f \in \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]$ is the piecewise monomial function

$$
f^{\mathrm{tr}}: \mathbb{R}_{>0}^{k} \longrightarrow \mathbb{R}_{>0}, \quad x \mapsto \max _{\ell \in \operatorname{supp}(f)} x^{\ell}
$$

Proposition

Let \mathcal{F} be a simplicial refinement of the normal fan of $\mathcal{N}(f)+\mathcal{N}(g)$. Then

$$
\mathcal{I}_{f, g}=\int_{X>0} \frac{f}{g} \Omega_{X}=\sum_{\sigma \in \mathcal{F}(n)} \int_{\operatorname{Exp}(\sigma)} \frac{f^{\operatorname{tr}}}{g^{\operatorname{tr}}} \underbrace{\frac{f \cdot g^{\operatorname{tr}}}{g \cdot f^{\operatorname{tr}}}}_{\text {, positive and bounded on } X_{>0}} \Omega_{X}=\sum_{\sigma \in \mathcal{F}(n)} \mathcal{I}_{\sigma} \quad \text { sector integrals }
$$

$\diamond \operatorname{Exp}: \mathbb{R}^{k} / K \rightarrow X_{>0},\left[y_{1}, \ldots, y_{k}\right] \mapsto \pi\left(e^{y}\right) \quad \diamond$ parameterization $x^{\sigma}:[0,1]^{n} \rightarrow \operatorname{Exp}(\sigma)$

Tropical detour

Also the tropical integral $\mathcal{I}_{f, g}^{\mathrm{tr}}=\int_{X_{>0}} f^{\mathrm{tr}} / g^{\mathrm{tr}} \Omega_{X}$ decomposes as $\mathcal{I}^{\mathrm{tr}}=\sum_{\sigma \in \mathcal{F}(n)} \mathcal{I}_{\sigma}^{\mathrm{tr}}$. Each tropical sector integral $\mathcal{I}_{\sigma}^{\mathrm{tr}}$ is an integral over a monomial encoded by data of \mathcal{F} !

$$
\mathcal{I}_{\sigma}^{\operatorname{tr}}=\int_{\operatorname{Exp}(\sigma)} x^{-\left(\nu_{g}-\nu_{f}\right)} \Omega_{X}
$$

Toric data of f, g

Theorem

Suppose that the Newton polytope of g is n-dimensional and contains that of the numerators f in its relative interior. Then the integral $\int_{X_{>0}} f / g \Omega_{X}$ converges.

Proposition

Let \mathcal{F} a simplicial refinement of $\mathcal{N}(f)+\mathcal{N}(g)$. Let σ be a cone of \mathcal{F}, ν_{f} and ν_{g} corresponding faces of $\mathcal{N}(f)$ and $\mathcal{N}(g)$. Then:

$$
\frac{f^{\operatorname{tr}(x)}}{g^{\operatorname{tr}(x)}}=x^{-\left(\nu_{g}-\nu_{f}\right)} \quad \text { for all } x \in \mathbb{R}^{k} \text { such that } \pi(x) \in \operatorname{Exp}(\sigma)
$$

Then

$$
\mathcal{I}^{\operatorname{tr}}=\sum_{\sigma \in \mathcal{F}(n)} \mathcal{I}_{\sigma}^{\mathrm{tr}} \quad \text { where } \quad \mathcal{I}_{\sigma}^{\mathrm{tr}}=\int_{\operatorname{Exp}(\sigma)} \frac{f^{\operatorname{tr}}}{g^{\operatorname{tr}}} \Omega_{X}=\int_{\operatorname{Exp}(\sigma)} x^{-\left(\nu_{g}-\nu_{f}\right)} \Omega_{X}
$$

Write $\operatorname{im}\left(V^{\top}\right)$ as $\operatorname{ker}(W), W=\left(w_{1}|\cdots| w_{n}\right)$. The tropical sector integral is equal to

$$
\mathcal{I}_{\sigma}^{\mathrm{tr}}=\frac{\operatorname{det}(V W)}{\prod_{\ell=1}^{n} w_{\ell} \cdot\left(\nu_{g}-\nu_{f}\right)}
$$

Sampling from $\left(X_{>0}, d_{f, g}^{(\mathrm{tr})}\right)$

Sampling from the tropical density

Input: $\mathcal{F}, \mathcal{I}_{\sigma}^{t r}$, and $\mathcal{I}^{t r}$.
Step 1. Draw an n-dimensional cone σ from $\mathcal{F}(n)$ with probability $\mathcal{I}_{\sigma}^{\text {tr }} / \mathcal{I}^{\text {tr }}$.
Step 2. Draw a sample q from the unit hypercube $[0,1]^{n}$ using the uniform distribution.
Step 3. Compute $x^{\sigma}(q) \in X_{>0}$.
Output: The element $x^{\sigma}(q) \in X_{>0}$, a sample from $\left(X_{>0}, d_{f, g}^{t r}\right)$.
Sampling from $d_{f, g}$ via rejection sampling!

Proposition

Let $x^{(1)}, \ldots, x^{(N)}$ be tropical samples from $X_{>0}$. Then

$$
h(x)=\frac{f(x) \cdot g^{t r}(x)}{g(x) \cdot f^{t r}(x)}
$$

$$
\mathcal{I}_{f, g} \approx \mathcal{I}_{N}=\frac{\mathcal{I}_{f, g}^{\mathrm{tr}}}{N} \cdot \sum_{i=1}^{N} h\left(x^{(i)}\right) .
$$

Bayesian inference

Toric polytope models $c=\left(c_{0}, \ldots, c_{m}\right), c_{i} \in \mathbb{R}_{>0}$

- $Z=c_{0} x^{a_{0}}+c_{1} x^{a_{1}}+\cdots+c_{m} x^{a_{m}} \in S$ homogeneous of degree $\gamma \in \mathrm{Cl}(X)$ a_{i} lattice points of P
- $p_{i}=c_{i} x^{x_{i}} / Z, i=0, \ldots, m$, are positive on $X_{>0}, \quad \sum_{i=0}^{m} p_{i}=1$ statistical model: image of resulting map $X>0 \rightarrow \Delta_{m}$

Bayes' factor for toric pentagon model

Prior: distribution $\mu_{f, g}$ arising from uniform distribution on P°
Data: $\quad u=\left(u_{0}, \ldots, u_{5}\right)=(1,2,4,8,16,32) \quad u_{+}=\sum u_{i}=63$
Competing models: toric models \mathcal{M}_{c} for

$$
c^{(1)}=(2,3,5,7,11,13) \quad \text { and } \quad c^{(2)}=(32,16,8,4,2,1)
$$

Marginal likelihood integrals:

$$
\mathcal{I}_{u}^{(i)}=\int_{X_{>0}}=p_{0}^{u_{0} \ldots p_{5}^{u_{5}}} \underbrace{L_{u}^{(i)}(x)}_{\text {likelihood function }} \mu_{f, g}, \quad i=1,2 .
$$

Bayes' factor: $K=\mathcal{I}_{u}^{(1)} / \mathcal{I}_{u}^{(2)} \approx 21.06 . \quad \mathcal{M}_{c^{(1)}}$ is a better fit for the data than $\mathcal{M}_{c^{(2)}}$!

Sampling from $\left(X_{>0}, d_{f, g}\right)$

Setup

$\diamond d_{1}$ and d_{2} two densities on the same space with the same differential form e.g. on $\left(X_{>0}, \Omega_{X}\right)$
\diamond suppose it is hard to sample from d_{1}, but easy to sample from d_{2}
\diamond suppose there exists $C \geq 1$ such that $d_{1}(x) / d_{2}(x) \leq C$ for all x

Rejection sampling

Step 1. Draw a sample $x \in X$ using d_{2}, and $\xi \in[0, C]$ with the uniform distribution. Step 2. If $\xi<d_{1}(x) / d_{2}(x)$, accept x as a sample. Otherwise, reject x.
Output: A sample from $d_{2}(x) \cdot d_{1}(x) / d_{2}(x)$, i.e., $d_{1}(x)$.

Proposition

Suppose that $f=\sum_{\ell \in \operatorname{supp}(f)} f_{\ell} X^{\ell}$ has positive coefficients. Set $C_{1}=\min _{\ell \in \operatorname{supp}(f)} f_{\ell}$ and $C_{2}=\sum_{\ell \in \operatorname{supp}(f)} f_{\ell}$. Then

$$
0<C_{1} \leq \frac{f(x)}{f^{\operatorname{tr}}(x)} \leq C_{2}<\infty \quad \text { for all } \quad x \in X_{>0}
$$

Sampling from $d_{f, g}$ via rejection sampling with $d_{f, g}^{\mathrm{tr}}$!

Conclusion

In a nutshell

(1) Statistical models parameterized by toric varieties occur naturally.
(2) Positive toric varieties are probability spaces. positive geometries
(3) Bayesian inference via tropical methods. $\int_{X>0} L_{u} \Omega_{X}^{\text {prior }}, \int_{X>0} f / g \Omega_{X}$

Supplementary material

\diamond code in Julia available at: https://mathrepo.mis.mpg.de/BayesianIntegrals
\diamond painting inspired by the pentagon model: https://alsattelberger.de/painting/

Thank you for your attention!

Error estimates

Let $h(x)=\frac{f(x) \cdot g^{\operatorname{tr} r}(x)}{g(x) \cdot f^{\operatorname{tr}(x)}}$. Then

$$
M_{1} \leq h(x) \leq M_{2} \quad \text { for all } \quad x \in X_{>0}
$$

where

$$
M_{1}=\frac{\min _{\ell \in \operatorname{supp}(f)} f_{\ell}}{\sum_{\ell \in \operatorname{supp}(g)} g_{\ell}} \quad \text { and } \quad M_{2}=\frac{\sum_{\ell \in \operatorname{supp}(f)} f_{\ell}}{\min _{\ell \in \operatorname{supp}(g)} g_{\ell}}
$$

Proposition

Let $x^{(1)}, \ldots, x^{(N)}$ be tropical samples from $X_{>0}$. Then

$$
\mathcal{I}_{f, g} \approx \mathcal{I}_{N}=\frac{\mathcal{I}_{f, g}^{\mathrm{tr}}}{N} \cdot \sum_{i=1}^{N} h\left(x^{(i)}\right)
$$

Proposition

The standard deviation of the approximation above satisfies

$$
\sqrt{\mathbb{E}\left[\left(\mathcal{I}-\mathcal{I}_{N}\right)^{2}\right]} \leq \mathcal{I}^{\mathrm{tr}} \cdot \sqrt{\frac{M_{2}^{2}-M_{1}^{2}}{N}}
$$

The Wachspress model

$P \subset \mathbb{R}^{n}$ a polytope, Σ its inner normal fan, $V=\left(v_{1}|\cdots| v_{k}\right)$
Inequality representation of P

$$
P=\left\{y \in \mathbb{R}^{n} \mid\left\langle v_{i}, y\right\rangle+\alpha_{i} \geq 0, i=1,2, \ldots, k\right\}
$$

with $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{Z}_{>0}$. The vertices q_{l} of P are indexed by cones $I \in \Sigma(n)$: the vertex $q_{I} \in \mathbb{Z}^{n}$ is the unique solution of $\left\langle v_{i}, y\right\rangle=-\alpha_{i}$ for $i \in I$.

Definitions

The adjoint of P is the polynomial in variables y_{1}, \ldots, y_{n}

$$
A=\sum_{I \in \Sigma(n)}\left|\operatorname{det}\left(\widetilde{V}_{l}\right)\right| \cdot \prod_{i \notin l}\left(1+\frac{1}{\alpha_{i}}\left\langle v_{i}, y\right\rangle\right)
$$

The Wachspress model of P is the image of $P \rightarrow \Delta_{m}, y \mapsto\left(p_{l}(y)\right)_{I \in \Sigma(n)}$ with

$$
p_{l}(y)=\frac{\left|\operatorname{det}\left(\widetilde{V}_{l}\right)\right|}{A(y)} \cdot \prod_{I \in \Sigma(n)}\left(1+\frac{1}{\alpha_{i}}\left\langle v_{i}, y\right\rangle\right) .
$$

[^0]: Michael Borinsky, Anna-Laura Sattelberger, Bernd Sturmfels, and Simon Telen. Bayesian Integrals on Toric Varieties. SIAM J. Appl. Algebra Geom., 7:77-103, 2023.

