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Motivation

Two questions

1 How do the network’s properties affect the geometry of its function space?
How to characterize equivariance or invariance?

2 How to parameterize equivariant and invariant networks?
Which implications does if have for network design?
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Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions (fL,θ, . . . , f1,θ)

F : RN −→ F , F (θ) = fL,θ ◦ · · · ◦ f1,θ =: fθ .

Each layer fk,θ : Rdk−1 → Rdk is a composition activation ◦ affine-linear.

Training a network

Given training data D = {(x̂i , ŷi )i=1,...,S} ⊂ Rd0 × RdL , the aim is to minimize the loss

L : RN F−→ F ℓD−→ R .

Example: For ℓD the squared error loss, this gives minθ∈RN

∑S
i=1 (fθ(x̂i )− ŷi )

2 .

On function space: minM∈F ∥MX̂ − Ŷ ∥2Frob.

Critical points of L
⋄ pure: critical point of ℓD ⋄ spurious: induced by parameterization
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Linear convolutional networks (LCNs)

⋄ linear: identity as activation function

⋄ convolutional layers with filter w ∈ Rk and stride s ∈ N:

αw,s : Rd → Rd′ , (αw,s(x))i =
∑k−1

j=0 wjxis+j .

Geometry of linear convolutional networks [1]

Function space F(d,s) of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]

Let (d, s) be an LCN architecture with all strides > 1 and N ≥ 1 +
∑

i di si . For almost all
data D ∈ (Rd0 × RdL)N , every critical point θc of L satisfies one of the following:

1 F (θc) = 0, or

2 θc is a regular point of F and F (θc) is a smooth, interior point of F(d,s).
In particular, F (θc ) is a critical point of ℓD|Reg(F◦

(d,s)
).

This is known to be false for. . .

⋄ linear fully-connected networks ⋄ stride-one LCNs

[1] K. Kohn, T. Merkh, G. Montúfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl.
Algebra Geom., 6(3):368–406, 2022.
[2] K. Kohn, G. Montúfar, V. Shahverdi, M. Trager. Function Space and Critical Points of Linear Convolutional
Networks. Preprint arXiv:2304.0572, 2023. 3/12

https://epubs.siam.org/doi/10.1137/21M1441183
https://arxiv.org/abs/2304.05752


Algebraic geometry for machine learning

Natural points of entry

⋄ algebraic vision [3] ⋄ geometry of function spaces

Algebraic varieties

subsets of Cn obtained as common zero set of polynomials p1, . . . , pN ∈ C[x1, . . . , xn]

Drawing real points of algebraic varieties

V(y2 − x2(x + 1)) V(p0p2 − (p0 + p1)p1) ⊂ ∆2 V(x2y − y3 − z3)

a nodal curve a discrete statistical model a cubic surface

[3] J. Kileel and K. Kohn. Snapshot of Algebraic Vision. Preprint arXiv:2210.11443, 2022. 4/12

https://arxiv.org/abs/2210.11443


Fully connected linear neural networks

Example

F : R2×4 × R3×2 −→ R3×4, (M1,M2) 7→ M2 ·M1

parameter space: RN = R2×4 × R3×2, f1,θ = M1, f2,θ = M2

Its function space F is the set of real points of the determinantal variety

M2,3×4(R) =
{
M ∈ R3×4 | rank(M) ≤ 2

}
.

f1,θ f2,θ

The determinantal variety Mr ,m×n

For M = (mij)i,j ∈ Cm×n: rank(M) ≤ r ⇔ all (r + 1)× (r + 1) minors of M vanish.
Define polynomials in mij

Mr,m×n = {M | rank(M) ≤ r} ⊂ Cm×n.

Well studied! dim(Mr,m×n) = r(m + n − r), Mr,m×n(R), singularities, . . .
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Invariant functions

fθ : Rn → Rr → Rm r < min(m, n)
G = ⟨σ1, . . . , σg ⟩ ≤ Sn a permutation group, acting on Rn by permuting the entries

induced action on M: permuting its columns

Invariance under σ ∈ Sn: fθ ◦ σ ≡ fθ

Decomposing into cycles

The decomposition σ = π1 ◦ · · · ◦ πk of σ into k disjoint cycles induces a partition

P(σ) = {A1, . . . ,Ak} of the set [n] = {1, . . . , n}. A1, . . . ,Ak ⊂ [n] pairwise disjoint sets

Example: The permutation σ = ( 1 2 3 4 5
3 5 4 1 2 ) = (1 3 4)(2 5) ∈ S5 induces the partition

P(σ) = {{1, 3, 4}, {2, 5}} of [5] = {1, 2, 3, 4, 5}. For η = (1 4 3)(2 5) ̸= σ: P(η) = P(σ).

Characterizing invariance MPσ
!
= M

Let σ ∈ Sn and P(σ) = {A1, . . . ,Ak} its induced partition. A matrix M = (m1| · · · |mn) is
invariant under σ = π1 ◦ · · · ◦ πk if and only if for each i , the columns {mj}j∈Ai coincide.

⇒ If M is invariant under σ, its rank is at most k.
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Example: rotation-invariance for m ×m pictures

Setup: n = m2 an even square number, fθ : Rn → Rn linear

σ ∈ Sn: rotating an m ×m picture clockwise by 90 degrees:

σ : Rm×m → Rm×m,


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

 7→


am1 am−1,1 . . . a11
am2 am−1,2 . . . a12
...

...
. . .

...
amm am,m−1 . . . a1m


Identify Rm×m ∼= Rn via A 7→ (a1,1, a1,m, am,m, am,1, a1,2, a2,m, am,m−1, am−1,1, . . . , a1,m−1,

am−1,m, am,2, a2,1, a2,2, a2,m−1, am−1,m−1, am−1,2, . . . , am
2
,m
2
, am

2
,m
2
+1, am

2
+1,m

2
, am

2
+1,m

2
+1)

⊤.

Under this identification, σ acts on Rn by the n × n block matrix



0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

· · ·
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


.

N.B.: σ-invariance of fθ implies that columns 1–4, 5–8, . . . , (n − 3)–n of M coincide.
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Properties of IG
r ,m×n ⊂ Mr ,m×n

G = ⟨σ1, . . . , σg ⟩ ≤ Sn a permutation group
σi = πi,1 ◦ · · · ◦ πi,ki , i = 1, . . . , g decomposition into pairwise disjoint cycles πi

Reduction to cyclic case

There exists σ ∈ Sn such that IG
r,m×n = Iσ

r,m×n . Any σ for which P(σ) is the finest

common coarsening of P(σ1), . . . ,P(σg ) does the job!

Proposition

Let G = ⟨σ⟩ ≤ Sn be cyclic, and σ = π1 ◦ · · · ◦ πk its decomposition into pairwise disjoint
cycles πi . The variety Iσ

r,m×n is isomorphic to the determinantal variety Mmin(r,k),m×k via
a linear isomorphism ψP(σ) : Iσ

r,m×n → Mmin(r,k),m×k . deleting repeated columns

Via that, we can determine dim(Iσ
r,m×n), deg(Iσ

r,m×n), and Sing(Iσ
r,m×n).

Example (m = 2, n = 5, r = 1)

Let σ = (1 3 4)(2 5) ∈ S5 and hence k = 2. Any invariant matrix M ∈ M2×5(R) is
of the form ( a c a a c

b d b b d ) for some a, b, c, d ∈ R. The rank constraint r = 1 imposes that
(c, d) = λ · (a, b)⊤ for some λ ∈ R, where we assume that (a, b) ̸= (0, 0). Then

ψP(σ) :

(
a λa a a λa
b λb b b λb

)
7→

(
a λa
b λb

)
.
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Parameterizing invariance and network design

Sn ∋ σ = π1 ◦ · · · ◦ πk , P(σ) = {A1, . . . ,Ak}

Invariance of M ∈ Mm×n: forces columns {mj}j∈Ai to coincide. For each i , remember

representative mAi and denote M1 := (mA1 | · · · |mAk ) ∈ Mm×k .

Parameterization

Any σ-invariant M ∈ Mm×n of rank k factorizes as M = M1 · (ei1 | · · · |ein ) , eij ∈ Rk .
i-th standard unit vector in column j for all j ∈ Ai

Fibers of multiplication map

Let r ≤ min(m, n). Denote by p : Mm×r ×Mr×n, (A,B) 7→ A · B. If rank(M) = r and
M = p(A,B) for some A,B, then the fiber of p over M is

p−1(M) =
{(

AT−1,TB
)
|T ∈ GLn(C)

}
⊂ Mm×r ×Mr×n .

Learning invariant linear functions with autoencoders

Let M be invariant under σ and of rank k. Any factorization M = A · B is of the form

(A,B) ∈
{(

M1T
−1,T (ei1 | · · · |ein )

)
|T ∈ GLn

}
.

This parameterization imposes a weight sharing property on the encoder!
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Euclidean distance (ED) degree

Motivation: complexity during and after training

1 For an arbitrary learned function, find a nearest invariant function .

2 Training invariant networks: determine pure critical points for Euclidean loss .

Definition

The Euclidean distance (ED) degree of an algebraic variety X in RN is the number of
complex critical points of the squared Euclidean distance from X to a general point outside
the variety. It is denoted by degED(X ).

Examples: degED(circle) = 2, degED(ellipse) = 4.

ED degree of Mr ,m×n(R) and Iσ
r ,m×n(R)

Let σ = π1 ◦ · · · ◦ πk ∈ Sn and r ≤ min(m, n). Then

⋄ degED(Mr,m×n(R)) =
(
min(m,n)

r

)
,

⋄ degED
(
IG
r,m×n(R)

)
= degED

(
Mmin(r,k),m×k(R)

)
=
(
min(m,k)
min(r,k)

)
.

[4] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an
Algebraic Variety. Found. Comp. Math., 16:99–149, 2016. 10/12



Equivariant linear autoencoders

fθ : Rn −→ Rr −→ Rn r < n
G = ⟨σ⟩ ≤ Sn a cyclic permutation group generated by a single σ ∈ Sn

Equivariance under σ: fθ ◦ σ ≡ σ ◦ fθ .

For matrices: M equivariant if MPσ = PσM . commutator of Pσ

In- and output

⋄ n = m2 : m ×m image with real pixels

⋄ n = m3 : cubic 3D scenery

Characterizing Eσ
r ,n×n

⋄ dim: ✓ ⋄ deg: ✓ ⋄ Sing: ✓ ⋄ ED degree: under construction!

Exploiting similarity transforms of the form

Pσ =


0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 ∼T17→


0 0 1
1 0 0
0 1 0

0

0
0 1
1 0

 ∼T27→


1

ζ3
ζ2
3

1
−1

 .
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Conclusion

Key points: algebraic geometry helps for. . .

1 a thorough study of function spaces of linear neural networks
fully connected, convolutional

2 understanding the training process
locating critical points of the loss

3 the design of neural networks
invariance implies rank constraint & weight sharing property

4 determining the complexity during and post training
ED degree of real varieties

Future work

⋄ full characterization of equivariance
non-cyclic permutation groups

⋄ generalization to other groups
e.g. non-discrete groups

⋄ variation of the network architecture
more layers, non-linear activation functions

Thank you for your attention!
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Characterizing invariance

Sn ∋ σ = π1 ◦ · · · ◦ πk decomposition of σ into k pairwise disjoint cycles
ψP(σ) : Iσ

r,m×n
∼= Mmin(r,k),m×k linear isomorphism

Properties of Iσ
r ,m×n

dim
(
Iσ
r,m×n

)
= min(r , k) · (m + k −min(r , k)) ,

deg
(
Iσ
r,m×n

)
=

k−min(r,k)−1∏
i=0

(m + i)! · i !
(min(r , k) + i)! · (m − (min(r , k) + i)!

,

Sing(Iσ
r,m×n) = ψ−1

P(σ)

(
Mmin(r,k)−1,m×k

)
.

Euclidean distance degree

degED
(
IG
r,m×n(R)

)
=

(
min(m, k)

min(r , k)

)
.
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Weight sharing property of the encoder

Example

Let m = n = 5, r = 2 and σ = (1 3 4)(2 5) ∈ S5. If a matrix M = AB ∈ Iσ
2,5×5 is invariant

under σ, the encoder factor B has to fulfill the following weight sharing property:

B

Figure: The σ-weight sharing property imposed on the encoder.
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Stepwise diagonalization of permutation matrices: an example

Consider the permutation σ =

(
1 2 3 4 5
3 5 4 1 2

)
= (1 3 4)(2 5) ∈ S5. Then

Pσ =


0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 ∼T17→


0 0 1
1 0 0
0 1 0

0

0
0 1
1 0

 ∼T27→


1

ζ3
ζ23

1
−1


with

T1 =


0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 and T2 =


1 1 1
1 ζ3 ζ23
1 ζ23 ζ3

0

0
1 1
1 −1

 ∈ GL5(C) ,

where ζ3 denotes the primitive 3rd root of unity exp2πi/3 .
+ grouping identical eigenvalues (optional step)

N.B.: T2 is block diagonal with Vandermonde matrix blocks V (1, ζ3, ζ
3
3 ) and V (1,−1).
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Similarity transforms

For a subvariety X ⊂ Mm×n and any T ∈ GLn(C), we denote by X ·T the image of X
under the linear isomorphism

·T : Mm×n −→ Mm×n, M 7→ MT .

Lemma

Let X ⊂ Mm×n be a subvariety and let T ∈ GLn(C). Then, dim(X ·T ) = dimX ,
deg(X ·T ) = degX , Sing(X ·T ) = Sing(X )·T , and (X ·T )∩Mr,m×n = (X ∩Mr,m×n)

·T for
any r ≤ min(m, n).

Notation: For T ∈ GLn(C) and M ∈ Mn×n, denote M∼T := T−1MT .

Observation

A matrix M commutes with a matrix P if and only if P∼T commutes with M∼T , and
MP = M if and only if M∼TP∼T = M∼T if and only if MTP∼T = MT .
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Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of Eσ
r,n×n and

the integer solution vectors r = (rl,m) of∑
l≥1

∑
m∈ (Z/lZ)×

rl,m = r ,

where 0 ≤ rl,m ≤ dl . dl the dimension of the eigenspace of Pσ of the eigenvalue ζk = e2πi/l

Properties of Eσ
r ,n×n

dim
(
Eσ
r,n×n(C)

)
= max

r= (rl,m)

∑
l≥1

∑
m∈ (Z/lZ)×

(2dk − rl,m) · rl,m

 ,

deg
(
Eσ,(r)
r,n×n(C)

)
=
∏
l≥1

∏
m∈ (Z/lZ)×

dk−rl,m−1∏
i=0

(dk + i)! · i !
(rl,m + i)! · (dk − rl,m + i)!

,

Sing
(
Eσ
r,n×n(K)

)
= Eσ

r−1,n×n(K) . K ∈ {R,C}
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