Geometry of Linear Neural Networks:
 Equivariance and Invariance under Permutation Groups

Kathlén Kohn, Anna-Laura Sattelberger, Vahid Shahverdi arxiv:2309.13736 [cs.LG]

DMV Annual Meeting 2023
Section: Mathematics of Data Science

September 26, 2023
TU Ilmenau

Motivation

Two questions

(1) How do the network's properties affect the geometry of its function space? How to characterize equivariance or invariance?
(2) How to parameterize equivariant and invariant networks? Which implications does if have for network design?

Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions $\left(f_{L, \theta}, \ldots, f_{1, \theta}\right)$

$$
F: \mathbb{R}^{N} \longrightarrow \mathcal{F}, \quad F(\theta)=f_{L, \theta} \circ \cdots \circ f_{1, \theta}=: f_{\theta}
$$

Each layer $f_{k, \theta}: \mathbb{R}^{d_{k-1}} \rightarrow \mathbb{R}^{d_{k}}$ is a composition activation \circ affine-linear.

Training a network

Given training data $\mathcal{D}=\left\{\left(\widehat{x}_{i}, \widehat{y}_{i}\right)_{i=1, \ldots, s}\right\} \subset \mathbb{R}^{d_{0}} \times \mathbb{R}^{d_{L}}$, the aim is to minimize the loss

$$
\mathcal{L}: \mathbb{R}^{N} \xrightarrow{F} \mathcal{F} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Example: For $\ell_{\mathcal{D}}$ the squared error loss, this gives $\min _{\theta \in \mathbb{R}^{N}} \sum_{i=1}^{S}\left(f_{\theta}\left(\widehat{x}_{i}\right)-\widehat{y}_{i}\right)^{2}$. On function space: $\min _{M \in \mathcal{F}}\|M \widehat{X}-\widehat{Y}\|_{\text {Frob }}^{2}$.

Critical points of \mathcal{L}
\diamond pure: critical point of $\ell_{\mathcal{D}}$
\diamond spurious: induced by parameterization

Linear convolutional networks (LCNs)

\diamond linear: identity as activation function
\diamond convolutional layers with filter $w \in \mathbb{R}^{k}$ and stride $s \in \mathbb{N}$:

$$
\alpha_{w, s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}, \quad\left(\alpha_{w, s}(x)\right)_{i}=\sum_{j=0}^{k-1} w_{j} x_{i s+j}
$$

Geometry of linear convolutional networks [1]

Function space $\mathcal{F}_{(\mathbf{d}, \mathrm{s})}$ of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]

Let (\mathbf{d}, \mathbf{s}) be an LCN architecture with all strides >1 and $N \geq 1+\sum_{i} d_{i} \boldsymbol{s}_{i}$. For almost all data $\mathcal{D} \in\left(\mathbb{R}^{d_{0}} \times \mathbb{R}^{d_{L}}\right)^{N}$, every critical point θ_{c} of \mathcal{L} satisfies one of the following:
(1) $F\left(\theta_{c}\right)=0$, or
(2) θ_{c} is a regular point of F and $F\left(\theta_{c}\right)$ is a smooth, interior point of $\mathcal{F}_{(\mathbf{d}, \mathbf{s})}$.

In particular, $F\left(\theta_{c}\right)$ is a critical point of $\left.\ell_{\mathcal{D}}\right|_{\operatorname{Reg}\left(\mathcal{F}_{(\mathrm{d}, \mathrm{s})}^{\circ}\right)}$.
This is known to be false for. . .
\diamond linear fully-connected networks \diamond stride-one LCNs

[^0]
Algebraic geometry for machine learning

Natural points of entry
\diamond algebraic vision [3] \diamond geometry of function spaces
Algebraic varieties
subsets of \mathbb{C}^{n} obtained as common zero set of polynomials $p_{1}, \ldots, p_{N} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
Drawing real points of algebraic varieties

$$
V\left(y^{2}-x^{2}(x+1)\right)
$$

a nodal curve

$\mathcal{V}\left(p_{0} p_{2}-\left(p_{0}+p_{1}\right) p_{1}\right) \subset \Delta_{2}$ a discrete statistical model

$\mathcal{V}\left(x^{2} y-y^{3}-z^{3}\right)$
a cubic surface
[3] J. Kileel and K. Kohn. Snapshot of Algebraic Vision. Preprint arXiv:2210.11443, 2022.

Fully connected linear neural networks

Example

$F: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} \longrightarrow \mathbb{R}^{3 \times 4}, \quad\left(M_{1}, M_{2}\right) \mapsto M_{2} \cdot M_{1}$

parameter space: $\mathbb{R}^{N}=\mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2}, f_{1, \theta}=M_{1}, f_{2, \theta}=M_{2}$
Its function space \mathcal{F} is the set of real points of the determinantal variety

$$
\mathcal{M}_{2,3 \times 4}(\mathbb{R})=\left\{M \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(M) \leq 2\right\}
$$

The determinantal variety $\mathcal{M}_{r, m \times n}$
For $M=\left(m_{i j}\right)_{i, j} \in \mathbb{C}^{m \times n}: \operatorname{rank}(M) \leq r \Leftrightarrow$ all $(r+1) \times(r+1)$ minors of M vanish. Define polynomials in $m_{i j}$

$$
\mathcal{M}_{r, m \times n}=\{M \mid \operatorname{rank}(M) \leq r\} \subset \mathbb{C}^{m \times n}
$$

Well studied! $\operatorname{dim}\left(\mathcal{M}_{r, m \times n}\right)=r(m+n-r), \mathcal{M}_{r, m \times n}(\mathbb{R})$, singularities, \ldots

Invariant functions

$f_{\theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r} \rightarrow \mathbb{R}^{m} \quad r<\min (m, n)$
$G=\left\langle\sigma_{1}, \ldots, \sigma_{g}\right\rangle \leq \mathcal{S}_{n} \quad$ a permutation group, acting on \mathbb{R}^{n} by permuting the entries induced action on M : permuting its columns

Invariance under $\sigma \in \mathcal{S}_{n}: f_{\theta} \circ \sigma \equiv f_{\theta}$
Decomposing into cycles
The decomposition $\sigma=\pi_{1} \circ \cdots \circ \pi_{k}$ of σ into k disjoint cycles induces a partition $\mathcal{P}(\sigma)=\left\{A_{1}, \ldots, A_{k}\right\}$ of the set $[n]=\{1, \ldots, n\} . A_{1}, \ldots, A_{k} \subset[n]$ pairwise disjoint sets

Example: The permutation $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 5 & 4 & 5\end{array}\right)=(134)(25) \in \mathcal{S}_{5}$ induces the partition $\mathcal{P}(\sigma)=\{\{1,3,4\},\{2,5\}\}$ of $[5]=\{1,2,3,4,5\}$. For $\eta=(143)(25) \neq \sigma: \mathcal{P}(\eta)=\mathcal{P}(\sigma)$.

Characterizing invariance $\quad M P_{\sigma} \stackrel{!}{=} M$
Let $\sigma \in \mathcal{S}_{n}$ and $\mathcal{P}(\sigma)=\left\{A_{1}, \ldots, A_{k}\right\}$ its induced partition. A matrix $M=\left(m_{1}|\cdots| m_{n}\right)$ is invariant under $\sigma=\pi_{1} \circ \cdots \circ \pi_{k}$ if and only if for each i, the columns $\left\{m_{j}\right\}_{j \in A_{i}}$ coincide.
\Rightarrow If M is invariant under σ, its rank is at most k.

Example: rotation-invariance for $m \times m$ pictures

Setup: $n=m^{2}$ an even square number, $f_{\theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ linear $\sigma \in \mathcal{S}_{n}$: rotating an $m \times m$ picture clockwise by 90 degrees:

$$
\sigma: \mathbb{R}^{m \times m} \rightarrow \mathbb{R}^{m \times m},\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m m}
\end{array}\right) \mapsto\left(\begin{array}{cccc}
a_{m 1} & a_{m-1,1} & \ldots & a_{11} \\
a_{m 2} & a_{m-1,2} & \ldots & a_{12} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m m} & a_{m, m-1} & \ldots & a_{1 m}
\end{array}\right)
$$

Identify $\mathbb{R}^{m \times m} \cong \mathbb{R}^{n}$ via $A \mapsto\left(a_{1,1}, a_{1, m}, a_{m, m}, a_{m, 1}, a_{1,2}, a_{2, m}, a_{m, m-1}, a_{m-1,1}, \ldots, a_{1, m-1}\right.$, $\left.a_{m-1, m}, a_{m, 2}, a_{2,1}, a_{2,2}, a_{2, m-1}, a_{m-1, m-1}, a_{m-1,2}, \ldots, a_{\frac{m}{2}, \frac{m}{2}}, a_{\frac{m}{2}, \frac{m}{2}+1}, a_{\frac{m}{2}+1, \frac{m}{2}}, a_{\frac{m}{2}+1, \frac{m}{2}+1}\right)^{\top}$.
Under this identification, σ acts on \mathbb{R}^{n} by the $n \times n$ block matrix

$$
\left(\begin{array}{lllllllll}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & & & \\
0 & 1 & 0 & 0 & & & & & \\
0 & 0 & 1 & 0 & & & & & \\
& & & & \cdots & & & & \\
& & & & & 0 & 0 & 0 & 1 \\
& & & & & 1 & 0 & 0 & 0 \\
& & & & & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

N.B.: σ-invariance of f_{θ} implies that columns $1-4,5-8, \ldots,(n-3)-n$ of M coincide.

Properties of $\mathcal{I}_{r, m \times n}^{G} \subset \mathcal{M}_{r, m \times n}$

$$
\begin{aligned}
G & =\left\langle\sigma_{1}, \ldots, \sigma_{g}\right\rangle \leq \mathcal{S}_{n} \\
\sigma_{i} & =\pi_{i, 1} \circ \cdots \circ \pi_{i, k_{i}}, i=1, \ldots, g
\end{aligned}
$$

a permutation group
decomposition into pairwise disjoint cycles π_{i}

Reduction to cyclic case

There exists $\sigma \in \mathcal{S}_{n}$ such that $\mathcal{I}_{r, m \times n}^{G}=\mathcal{I}_{r, m \times n}^{\sigma}$. Any σ for which $\mathcal{P}(\sigma)$ is the finest common coarsening of $\mathcal{P}\left(\sigma_{1}\right), \ldots, \mathcal{P}\left(\sigma_{g}\right)$ does the job!

Proposition

Let $G=\langle\sigma\rangle \leq \mathcal{S}_{n}$ be cyclic, and $\sigma=\pi_{1} \circ \cdots \circ \pi_{k}$ its decomposition into pairwise disjoint cycles π_{i}. The variety $\mathcal{I}_{r, m \times n}^{\sigma}$ is isomorphic to the determinantal variety $\mathcal{M}_{\min (r, k), m \times k}$ via a linear isomorphism $\psi_{\mathcal{P}(\sigma)}: \mathcal{I}_{r, m \times n}^{\sigma} \rightarrow \mathcal{M}_{\min (r, k), m \times k}$. deleting repeated columns

Via that, we can determine $\operatorname{dim}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right), \operatorname{deg}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right)$, and $\operatorname{Sing}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right)$.

Example $(m=2, n=5, r=1)$

Let $\sigma=(134)(25) \in \mathcal{S}_{5}$ and hence $k=2$. Any invariant matrix $M \in \mathcal{M}_{2 \times 5}(\mathbb{R})$ is of the form $\left(\begin{array}{lll}a & c & a \\ b & a & c \\ b & b & b \\ b & d\end{array}\right)$ for some $a, b, c, d \in \mathbb{R}$. The rank constraint $r=1$ imposes that $(c, d)=\lambda \cdot(a, b)^{\top}$ for some $\lambda \in \mathbb{R}$, where we assume that $(a, b) \neq(0,0)$. Then

$$
\psi_{\mathcal{P}(\sigma)}:\left(\begin{array}{lllll}
a & \lambda a & a & a & \lambda a \\
b & \lambda b & b & b & \lambda b
\end{array}\right) \mapsto\left(\begin{array}{cc}
a & \lambda a \\
b & \lambda b
\end{array}\right) .
$$

Parameterizing invariance and network design

$\mathcal{S}_{n} \ni \sigma=\pi_{1} \circ \cdots \circ \pi_{k}, \mathcal{P}(\sigma)=\left\{A_{1}, \ldots, A_{k}\right\}$
Invariance of $M \in \mathcal{M}_{m \times n}$: forces columns $\left\{m_{j}\right\}_{j \in A_{i}}$ to coincide. For each i, remember representative $m_{A_{i}}$ and denote $M_{1}:=\left(m_{A_{1}}|\cdots| m_{A_{k}}\right) \in \mathcal{M}_{m \times k}$.

Parameterization

Any σ-invariant $M \in \mathcal{M}_{m \times n}$ of rank k factorizes as $M=M_{1} \cdot\left(e_{i_{1}}|\cdots| e_{i_{n}}\right)$, $e_{i_{j}} \in \mathbb{R}^{k}$. i-th standard unit vector in column j for all $j \in A_{i}$

Fibers of multiplication map

Let $r \leq \min (m, n)$. Denote by $p: \mathcal{M}_{m \times r} \times \mathcal{M}_{r \times n},(A, B) \mapsto A \cdot B$. If $\operatorname{rank}(M)=r$ and $M=p(A, B)$ for some A, B, then the fiber of p over M is

$$
p^{-1}(M)=\left\{\left(A T^{-1}, T B\right) \mid T \in \mathrm{GL}_{n}(\mathbb{C})\right\} \subset \mathcal{M}_{m \times r} \times \mathcal{M}_{r \times n}
$$

Learning invariant linear functions with autoencoders

Let M be invariant under σ and of rank k. Any factorization $M=A \cdot B$ is of the form

$$
(A, B) \in\left\{\left(M_{1} T^{-1}, T\left(e_{i_{1}}|\cdots| e_{i_{n}}\right)\right) \mid T \in \mathrm{GL}_{n}\right\}
$$

This parameterization imposes a weight sharing property on the encoder!

Euclidean distance (ED) degree

Motivation: complexity during and after training

(1) For an arbitrary learned function, find a nearest invariant function
(2) Training invariant networks: determine pure critical points for Euclidean loss.

Definition

The Euclidean distance (ED) degree of an algebraic variety \mathcal{X} in \mathbb{R}^{N} is the number of complex critical points of the squared Euclidean distance from \mathcal{X} to a general point outside the variety. It is denoted by $\operatorname{deg}_{\mathrm{ED}}(\mathcal{X})$.

Examples: $\operatorname{deg}_{\mathrm{Ed}}($ circle $)=2, \operatorname{deg}_{\mathrm{ED}}($ ellipse $)=4$.
ED degree of $\mathcal{M}_{r, m \times n}(\mathbb{R})$ and $\mathcal{I}_{r, m \times n}^{\sigma}(\mathbb{R})$
Let $\sigma=\pi_{1} \circ \cdots \circ \pi_{k} \in \mathcal{S}_{n}$ and $r \leq \min (m, n)$. Then
$\diamond \operatorname{deg}_{E D}\left(\mathcal{M}_{r, m \times n}(\mathbb{R})\right)=(\underset{r}{\min (m, n)})$,
$\diamond \operatorname{deg}_{\text {ED }}\left(\mathcal{I}_{r, m \times n}^{G}(\mathbb{R})\right)=\operatorname{deg}_{\text {ED }}\left(\mathcal{M}_{\min (r, k), m \times k}(\mathbb{R})\right)=\binom{\min (m, k)}{\min (r, k)}$.
[4] J. Draisma, E. Horobeț, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an Algebraic Variety. Found. Comp. Math., 16:99-149, 2016.

Equivariant linear autoencoders

$$
\begin{array}{ll}
f_{\theta}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{r} \longrightarrow \mathbb{R}^{n} & r<n \\
G=\langle\sigma\rangle \leq \mathcal{S}_{n} & \text { a cyclic permutation group } \quad \text { generated by a single } \sigma \in \mathcal{S}_{n}
\end{array}
$$

Equivariance under $\sigma: f_{\theta} \circ \sigma \equiv \sigma \circ f_{\theta}$.
For matrices: M equivariant if $M P_{\sigma}=P_{\sigma} M$. commutator of P_{σ}
In- and output
$\diamond n=m^{2}: m \times m$ image with real pixels
$\diamond n=m^{3}$: cubic 3D scenery
Characterizing $\mathcal{E}_{r, n \times n}^{\sigma}$
\diamond dim:
\diamond deg:
\diamond Sing:
\diamond ED degree: under construction!

Exploiting similarity transforms of the form

$$
P_{\sigma}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \stackrel{{ }_{T_{1}}^{\mapsto}}{\mapsto}\left(\begin{array}{lll|ll}
0 & 0 & 1 & & \\
1 & 0 & 0 & & 0 \\
0 & 1 & 0 & & \\
\hline & 0 & & 0 & 1 \\
& & & 1 & 0
\end{array}\right) \stackrel{{ }^{\sim}}{\sim_{T_{2}}}\left(\begin{array}{llll}
1 & & & \\
& \zeta_{3} & & \\
& & \zeta_{3}^{2} & \\
& & & 1
\end{array}\right]
$$

Conclusion

Key points: algebraic geometry helps for. . .
(1) a thorough study of function spaces of linear neural networks fully connected, convolutional
(2) understanding the training process locating critical points of the loss
(3) the design of neural networks
invariance implies rank constraint \& weight sharing property
(4) determining the complexity during and post training

ED degree of real varieties

Future work

\diamond full characterization of equivariance non-cyclic permutation groups
\diamond generalization to other groups e.g. non-discrete groups
\diamond variation of the network architecture more layers, non-linear activation functions

Thank you for your attention!

Characterizing invariance

$\mathcal{S}_{n} \ni \sigma=\pi_{1} \circ \cdots \circ \pi_{k}$
$\psi_{\mathcal{P}(\sigma)}: \mathcal{I}_{r, m \times n}^{\sigma} \cong \mathcal{M}_{\min (r, k), m \times k}$
decomposition of σ into k pairwise disjoint cycles linear isomorphism

Properties of $\mathcal{I}_{r, m \times n}^{\sigma}$

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right)=\min (r, k) \cdot(m+k-\min (r, k)), \\
& \operatorname{deg}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right)=\prod_{i=0}^{k-\min (r, k)-1} \frac{(m+i)!\cdot i!}{(\min (r, k)+i)!\cdot(m-(\min (r, k)+i)!}, \\
& \operatorname{Sing}\left(\mathcal{I}_{r, m \times n}^{\sigma}\right)=\psi_{\mathcal{P}(\sigma)}^{-1}\left(\mathcal{M}_{\min (r, k)-1, m \times k}\right) .
\end{aligned}
$$

Euclidean distance degree

$$
\operatorname{deg}_{E D}\left(\mathcal{I}_{r, m \times n}^{G}(\mathbb{R})\right)=\binom{\min (m, k)}{\min (r, k)}
$$

Weight sharing property of the encoder

Example

Let $m=n=5, r=2$ and $\sigma=(134)(25) \in \mathcal{S}_{5}$. If a matrix $M=A B \in \mathcal{I}_{2,5 \times 5}^{\sigma}$ is invariant under σ, the encoder factor B has to fulfill the following weight sharing property:

Figure: The σ-weight sharing property imposed on the encoder.

Stepwise diagonalization of permutation matrices: an example

Consider the permutation $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2\end{array}\right)=(134)(25) \in \mathcal{S}_{5}$. Then

$$
P_{\sigma}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \stackrel{\sim_{T_{1}}}{\mapsto}\left(\begin{array}{lll|ll}
0 & 0 & 1 & & \\
1 & 0 & 0 & & 0 \\
0 & 1 & 0 & & \\
\hline & 0 & & 0 & 1 \\
& & & 1 & 0
\end{array}\right) \stackrel{\sim_{T_{2}}}{\mapsto}\left(\begin{array}{lllll}
1 & & & & \\
& \zeta_{3} & & & \\
& & \zeta_{3}^{2} & & \\
& & & 1 & \\
& & & & -1
\end{array}\right)
$$

with

$$
T_{1}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad T_{2}=\left(\begin{array}{ccc|cc}
1 & 1 & 1 & & \\
1 & \zeta_{3} & \zeta_{3}^{2} & & 0 \\
1 & \zeta_{3}^{2} & \zeta_{3} & & \\
\hline & 0 & & 1 & 1 \\
& & & 1 & -1
\end{array}\right) \in \operatorname{GL}_{5}(\mathbb{C})
$$

where ζ_{3} denotes the primitive 3 rd root of unity $\exp ^{2 \pi i / 3}$.

+ grouping identical eigenvalues (optional step)
N.B.: T_{2} is block diagonal with Vandermonde matrix blocks $V\left(1, \zeta_{3}, \zeta_{3}^{3}\right)$ and $V(1,-1)$.

Similarity transforms

For a subvariety $\mathcal{X} \subset \mathcal{M}_{m \times n}$ and any $T \in \mathrm{GL}_{n}(\mathbb{C})$, we denote by $\mathcal{X}^{\cdot T}$ the image of \mathcal{X} under the linear isomorphism

$$
\cdot T: \mathcal{M}_{m \times n} \longrightarrow \mathcal{M}_{m \times n}, \quad M \mapsto M T
$$

Lemma

Let $\mathcal{X} \subset \mathcal{M}_{m \times n}$ be a subvariety and let $T \in \mathrm{GL}_{n}(\mathbb{C})$. Then, $\operatorname{dim}\left(\mathcal{X}^{\cdot T}\right)=\operatorname{dim} \mathcal{X}$, $\operatorname{deg}\left(\mathcal{X}^{\cdot T}\right)=\operatorname{deg} \mathcal{X}, \operatorname{Sing}\left(\mathcal{X}^{\cdot T}\right)=\operatorname{Sing}(\mathcal{X})^{\cdot T}$, and $\left(\mathcal{X}^{\cdot T}\right) \cap \mathcal{M}_{r, m \times n}=\left(\mathcal{X} \cap \mathcal{M}_{r, m \times n}\right)^{\cdot T}$ for any $r \leq \min (m, n)$.

Notation: For $T \in G L_{n}(\mathbb{C})$ and $M \in \mathcal{M}_{n \times n}$, denote $M^{\sim_{T}}:=T^{-1} M T$.

Observation

A matrix M commutes with a matrix P if and only if $P^{\sim_{T}}$ commutes with $M^{\sim_{T}}$, and $M P=M$ if and only if $M^{\sim_{T}} P^{\sim_{T}}=M^{\sim T}$ if and only if $M T P^{\sim T}=M T$.

Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of $\mathcal{E}_{r, n \times n}^{\sigma}$ and the integer solution vectors $\mathbf{r}=\left(r_{l, m}\right)$ of

$$
\sum_{I \geq 1} \sum_{m \in(\mathbb{Z} / \mathbb{Z})^{\times}} r_{I, m}=r
$$

where $0 \leq r_{l, m} \leq d_{l} . \quad d_{l}$ the dimension of the eigenspace of P_{σ} of the eigenvalue $\zeta_{k}=e^{2 \pi i / l}$

Properties of $\mathcal{E}_{r, n \times n}^{\sigma}$

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{E}_{r, n \times n}^{\sigma}(\mathbb{C})\right)=\max _{r=\left(r_{l, m}\right)}\left\{\sum_{l \geq 1} \sum_{m \in(\mathbb{Z} / \mathbb{Z})^{\times}}\left(2 d_{k}-r_{l, m}\right) \cdot r_{l, m}\right\}, \\
& \operatorname{deg}\left(\mathcal{E}_{r, n \times n}^{\sigma,(\mathbf{r})}(\mathbb{C})\right)=\prod_{l \geq 1} \prod_{m \in(\mathbb{Z} / \mathbb{Z})^{\times}} \prod_{i=0}^{d_{k}-r_{l, m}-1} \frac{\left(d_{k}+i\right)!\cdot i!}{\left(r_{l, m}+i\right)!\cdot\left(d_{k}-r_{l, m}+i\right)!}, \\
& \operatorname{Sing}\left(\mathcal{E}_{r, n \times n}^{\sigma}(\mathbb{K})\right)=\mathcal{E}_{r-1, n \times n}^{\sigma}(\mathbb{K}) . \quad \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}
\end{aligned}
$$

[^0]: [1] K. Kohn, T. Merkh, G. Montúfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl. Algebra Geom., 6(3):368-406, 2022.
 [2] K. Kohn, G. Montúfar, V. Shahverdi, M. Trager. Function Space and Critical Points of Linear Convolutional Networks. Preprint arXiv:2304.0572, 2023.

