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Two questions

® How do the network’s properties affect the geometry of its function space?
How to characterize equivariance or invariance?

® How to parameterize equivariant and invariant networks?
Which implications does if have for network design?
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Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions (frg, ..., f1,¢)
F: RN — F, F() = figo---0fg = fy.

Each layer fi9: R%-1 s R% is a composition activation o affine-linear.

Training a network

Given training data D = {(X, %i)i=1,....,s} C R® x R%, the aim is to minimize the loss

c: RV L r 2R,

Example: For {p the squared error loss, this gives mingepn > o, (fo(%) — %i)° -
On function space: minycz [[M- X — Y|Z .

Critical points of £

© pure: critical point of /p © spurious: induced by parameterization
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Linear convolutional networks (LCNs)

¢ linear: identity as activation function

o convolutional layers with filter w € R¥ and stride s € N:

st RE SR, (w,s(x)); = 40y wixiss;

Geometry of linear convolutional networks [1]

Function space F(q,) of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]
Let (d,s) be an LCN architecture with all strides > 1 and N > 1+ 3", ds;. For almost all
data D € (R% x R™)", every critical point . of L satisfies one of the following:
® F(0.)=0, or
® 0. is a regular point of F and F(f.) is a smooth, interior point of Fgys).
In particular, F(6.) is a critical point of g'D‘Reg(}"&jﬂ’
This is known to be false for. ..

o linear fully-connected networks © stride-one LCNs

[1] K. Kohn, T. Merkh, G. Monttfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl.
Algebra Geom., 6(3):368—-406, 2022.

[2] K. Kohn, G. Montiifar, V. Shahverdi, M. Trager. Function Space and Critical Points of Linear Convolutional
Networks. Preprint arXiv:2304.0572, 2023. 3/16
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Algebraic geometry for machine learning

Natural points of entry

© algebraic vision [3] © geometry of function spaces

Algebraic varieties

subsets of C" obtained as common zero set of polynomials p1, ..., py € C[xi, ..., Xxi]

Drawing real points of algebraic varieties

5

V(y? = x3(x +1)) V(pop2 — (po + p1)p1) C A V(x2y —y3 = 23)
a nodal curve a discrete statistical model a cubic surface

[3] J. Kileel and K. Kohn. Snapshot of Algebraic Vision. Preprint arXiv:2210.11443, 2022. 4/16
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Fully connected linear neural networks

Example
F: RP* x R¥? — R¥*, (My, Ma) — My - My 7
1,0

0
parameter space: RN = R2%4 x R3%2, frg = M1, fr9 = M> 7

’

Its function space F is the set of real points of the determinantal variety

Mo sxa(R) = {M e R¥*| rank(M) < 2} )

The determinantal variety M, nxn

For M = (mjj)ij € C™*": rank(M) <r < all (r+1) x (r+ 1) minors of M vanish.
Define polynomials in mj;

Mr,mxn = {M| rank(M) S I’} C Ccmxn,

Well studied! dim(M, mxn), deg(Mr,mxn), Mrmxn(R), M

rymxny
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Invariant functions

fo: R" >R —R" r < min(m, n)
G ={o1,...,05) <S8, a permutation group, acting on R" by permuting the entries
induced action on M: permuting its columns

Invariance under 0 € S,: oo = fo

Decomposing into cycles

The decomposition 0 = 71 o --- o m, of o into k disjoint cycles induces a partition
‘ P(o) ={A1,..., A} ‘ of the set [n] = {1,...,n}. Ai,..., A, C [n] pairwise disjoint sets

345) = (134)(25) € Ss induces the partition
P(o) = {{1,3,4},{2,5}} of [5] = {1,2,3,4,5}. Forn=(143)(25)# o: P(n) = P(0).

Characterizing invariance MP, = M

Let o € Sp and P(0) = {Aq, ..., A} its induced partition. A matrix M = (my]---|m,) is
invariant under o = 71 o - - - o T, if and only if for each i, the columns {m;};ca; coincide.

= If M is invariant under o, its rank is at most k.
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Example: rotation-invariance for p x p pictures

Setup: n = p? an even square number, fp: R” — R" linear

o € S, rotating an p X p picture clockwise by 90 degrees:

ail ai2 .. aip apl ap—1,1 o ail
" “ ay ax»n ... axp a2  ap-12 ... a2
o: RPXP 5 RPXP, . . . . —
apl 32 ... app app  App—1 .- aAp
. % "o

Identify RP*P =2 R" via A+ (a1,1, a1,p, 3p,p; ap,1, 31,2, @2,ps Ap,p—1, Bp—1,1, - - - 5 3, p—1,
-

3p—1,p,3p,2,32,1,32,2,32,p—1,3p—1,p—1,3p—1.2, -+ 32 2,32 P 41,311 8,38 11 £ 1)

Under this identification, o acts on R" by the n x n block matrix

0 0 0 1
1 0 0 O
0 1 0 O
0O 0 1 0
0O 0 0 1
1 0 0 O
0O 1 0 O
0O 0 1 o0
N.B.: o-invariance of fy implies that columns 1-4, 5-8, ..., (n — 3)—-n of M coincide.

7/16



Properties of Z°,,.., C My mxn

G = (o1,...,04) < S a permutation group
0j = m10---0TM, i =1,...,8 decomposition into pairwise disjoint cycles m;

Reduction to cyclic case
There exists ¢ € S, such that I,Gmx,, =17 mxn |- Any o for which P(c) is the finest

common coarsening of P(a1),...,P(0g) does the job!

Proposition

Let G = (o) < S, be cyclic, and 0 = 71 0 - - - o 7 its decomposition into pairwise disjoint
cycles ;. The variety Z7 .., is isomorphic to the determinantal variety Mpin(r,k),mx« Via
a linear isomorphism ¥p(): Z7 mxn — Mumin(r,k),mxk -  deleting repeated columns

), and Sing(Z?

Via that, we can determine dim(Z7 . ), deg(Z7 7 mxn)-

r,mxn
,n=5r=1)

5
b

Example (m

(m=2
Let o = (134)(
of the form (3

(c,d) = A- (2, b)

€ Ss and hence k = 2. Any invariant matrix M € Mays(R) is
) for some a, b, c,d € R. The rank constraint r = 1 imposes that

for some A € R, where we assume that (a, b) # (0,0). Then

w_a)\aaa)\a)_)a)\a
P@) \b Ab b b Ab b AbJ -

)(25)
dbbd
T
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Parameterizing invariance and network design

Shoo=mo---om, Plo)={A1,..., A}

Invariance of M € Mpx,: forces columns {m;};ca; to coincide. For each i, remember

representative my,; and denote‘ My = (ma, |- | ma,) € Mpmxk. ‘

Parameterization

Any o-invariant M € Mpxn of rank k factorizes as M = M - (ey|---|e;,) . e € R*.
i-th standard unit vector in column j for all j € A;

Fibers of multiplication map

Let r < min(m, n). Denote by p1: Mpmx, X Mrxn, (A, B)+— A-B. If rank(M) = r and
M = pu(A, B) for some A, B, then the fiber of u over M is

(M) = {(AT*I, TB) ITe GL,,((C)} C Mumsr X Miysn.

Factorizations of invariant maps
Let M be invariant under o and of rank k. Any factorization M = A - B is of the form

(A,B) € {(Ml-T_l,T-(e;1|-~-|e;n)) |TeGL,,} .

This parameterization imposes a weight sharing property on the encoder factor!
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o-weight sharing

Example

Let m=n=5,r=2and o0 =(134)(25) € Ss. If a matrix M = AB € Ij 545 is invariant
under o, the encoder factor B has to fulfill the following weight sharing property:

B

Figure: The o-weight sharing property imposed on the encoder.

Learning invariant functions

Let c =mo---om €S, and let r < k. Consider the linear autoencoder R” — R" — R"
with fully-connected dense decoder R"” — R" and encoder R” — R" with o-weight sharing.
Its function space is Z7 , ,(R).
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Induced filtration of M, mxn

Observation

If M € Mpx, is invariant under o € Sy, then it is also invariant under every permutation
1 € S, whose associated partition P(n) of [n] is a refinement P(n) < P(o) of P(o).

This induces the filtration Zp,., of M pxn. (and Z° of My mxn)

r,mxn

indexed by partitions P([n]) = Sn/ ~ of the set [n]

Together with refinements of partitions, the set P([n]) of partitions of [n] is a poset.

As categories:

| Part) | Subviy, .

Ob partitions of the set [n] subvarieties of M, mxn
Mor | morphism from P; to P iff P; < P> | morphism from U; to U: iff Uy C U,

The filtration Z? ., is the functor | Party — Subvf, . P L n -

Dually: The opposite category Panrt[f]’op of Part[';] is Part[:, i.e., partitions of [n] with
coarsenings > of partitions as morphisms. In this formulation, the finest common coarse-

ning of partitions P, ..., Pk then is their inverse limit.
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Euclidean distance (ED) degree

Motivation: complexity during and after training
@ For an arbitrary learned function, find a nearest invariant function .

® Training invariant networks: determine pure critical points for Euclidean loss .

Definition

The Euclidean distance degree of an algebraic variety X in RV is the number of complex
critical points of the squared Euclidean distance from X to a general point outside the
variety. It is denoted by degep(X).

Examples: degep(circle) = 2, degep(ellipse) = 4.

ED degree of M, mxn(R) and Z7,. . ,(R)

Let c =mo---omx €S, and r < min(m, n). Then
o degep(Mr,mxn(R)) = (min(rm’")) ,  proof via Eckart—Young theorem
o degep (Z7men(R)) = deged (Mot et (B) = (7).

[4] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an
Algebraic Variety. Found. Comp. Math., 16:99-149, 2016.

[5] K. Kozhasov, A. Muniz, Y. Qi, L. Sodomaco. On the minimal algebraic complexity of the rank-one approxi-
mation problem for general linear products. Preprint arXiv:2309.15105, 2023. 12/16
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Equivariant linear autoencoders

fo: R"—R —R" r<n
G=(0)<S, a cyclic permutation group  generated by a single o € S,

Equivariance under 0. oo = gofy .

For matrices: M equivariant if MP, = P,M . commutator of P,

In- and output
o n=p?: px pimage with real pixels
o n=p°: cubic 3D scenery

ag
r,nxn

Characterizing &

o dim: Vv o deg: Vv © Sing: v < ED degree: under construction!

Exploiting similarity transforms of the form
1

~7
P, = —

o+ OOoOo
= OOOoOOo
oo oo

oo oOo
oo orOo
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Similarity transforms

For a subvariety X C Mmxn and fixed T € GL,(C), we denote by X7 the image of X
under the linear isomorphism

'T: Man—>Mm><n, M*—)MT

Lemma
Let X C Mmxn be a subvariety and let T € GL,(C). Then:

o |dim(X ) =dimX,| o|deg(X ") =degX,| o|Sing(X")=Sing(Xx) ",

o [ (XY Mo min = (X1 M) T | for any r < min(m, n).

Notation: For T € GL,(C) and M € Mxn, denote‘ MT = T IMT ‘

Observation

A matrix M commutes with a matrix P if and only if P~7 commutes with M~7.
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Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of £, , and
the integer solution vectors r = (r,,) of

E E Hm = r,

I>1 me (z)1Z)%

where 0 < r;m < dj.  d the dimension of the eigenspace of P, of the eigenvalue () = e2mi/l

Properties of £7

r,nxXn

dim (&7 ,xa(C))

max Z Z (2dk = ri,m) * f1m ¢

(n,
m) I>1 me (z/1Z)%

dk—1r1,m—
, B (de + )i
deg (& n(><n((c)) = H H H (rm + ,')[k. (dk — riym + 1)V

IZ1me (z/m)x =0
Sing (S:nx,,(K)) E1,nxn(K). K € {R,C}
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Conclusion

Key points: algebraic geometry helps for. . .
@ a thorough study of function spaces of linear neural networks
fully connected, convolutional

® understanding the training process
locating critical points of the loss

© the design of neural networks
invariance implies rank constraint & weight sharing property

@ determining the complexity during and post training
ED degree of real varieties

Current /future work
o full characterization of equivariance
non-cyclic permutation groups

o generalization to other groups
e.g. non-discrete groups

o variation of the network architecture
more layers, non-linear activation functions

Grazie mille/merci beaucoup/tack s§ mycket fér er uppmerksamhet!
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Characterizing invariance

Sh20=mo---om decomposition of o into k pairwise disjoint cycles
Vpo): Lfmxn = Mumin(r,k),mxk  linear isomorphism

Properties of Z7

,mXn

dim (Z7 mxs) = min(r, k) - (m+ k — min(r, k)),

k—min(r,k)—1 (m + I)l !

P (min(r, k) + i)'~ (m — (min(r, k) + )1’
Sing(I;T,mxn = 1/17;(10) (Mmin(r,k)fl,mxk) .

deg (I:mxn) =

Euclidean distance degree

degED (If:mxn(R)) = (r:']llr:I((’:’?:))) .
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Stepwise diagonalization of permutation matrices: an example

. . 1 2 3 45
Consider the permutation o = (3 5 o4 1 2) = (134)(25) € Ss. Then
00100 0 0 1 1
0000 1| _ | 100] 0 - (3
P,=]0 0 0 10~ |0 10 — G
10000 0 0 1 1
01 000 10 -1
with
0 0100 1 1 1
00010 1 ¢ G| o
T.=(0 100 0] and m=|1 & G € GLs(C),
10000 0 1 1
0 00 0 1 1 -1

where (3 denotes the primitive 3rd root of unity exp?™/3 .

+ grouping identical eigenvalues (optional step)

N.B.: T» is block diagonal with Vandermonde matrix blocks V/(1,¢s,¢3) and V/(1,—1).
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