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Abstract

Theses are the lecture notes of the graduate level course “D-Modules and Holo-
nomic Functions” at KTH and Stockholm University taught by the author in the fall
term 2023. The course consists of 10 lectures, each of which is the content of one
chapter of these notes. It introduces concepts from algebraic analysis and demon-
strates their utility in problems in the sciences. Algebraic analysis investigates linear
PDEs by algebraic methods. The main actor is the Weyl algebra, denoted D. It is a
non-commutative ring that gathers linear differential operators with polynomial coef-
ficients. The theory of D-modules provides deep classification results of linear PDEs,
structural insights into problems in the sciences as well as new computational tools.
This course focuses on the applied aspects of D-modules. The applications are rang-
ing from maximum likelihood estimation in statistical inference through the study of
Feynman integrals in high energy physics to the computation of volumes of basic semi-
algebraic sets to arbitrary precision. D-ideals encode systems of linear PDEs with
polynomial coefficients. The ideals encode crucial properties of the solutions of the
associated system of PDEs, such as their singularities. These occur in two different
kinds, namely as regular and irregular singularities. Series solutions of a regular holo-
nomic D-ideal can be computed purely algebraically in terms of Gröbner deformations
of the D-ideal. Due to Gröbner basis theories for the Weyl algebra, various software
systems are available to compute with holonomic D-ideals and their solutions, which
are called holonomic functions. Holonomic functions are ubiquitous in the sciences and
their function values can be computed via the holonomic gradient method, a numerical
evaluation scheme which makes use of an annihilating D-ideal of the function.

The course is hands-on: the focus lies on the introduction of concepts from algebraic
analysis and getting them to run for solving problems arising in applications. Many
proofs are therefore skipped, but references are provided. Required concepts from
algebraic geometry are introduced en route. The course is mainly based on [37] and [39]
and the references therein, as well as on current research articles.
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1 An algebraic counterpart of linear PDEs

Algebraic analysis is a mathematical field which investigates linear ordinary and partial dif-
ferential equations (ODEs and PDEs) with algebraic methods. In general, it investigates
sheaves of DX-modules on a complex manifold or a smooth algebraic variety X, where DX

is the sheaf of differential operators on X. This abstract setting enables deep classification
results, such as the Riemann–Hilbert correspondence. The Riemann–Hilbert correspondence
is an equivalence of categories which allows to replace a regular holonomic D-module by its
topological counterpart, namely its solution complex (cf. [21]). The theory of D-modules
turns out to be very helpful in applications as well, where it mainly enters via the Weyl alge-
bra, denoted D. It is D = DX(X) for X = An

C the affine n-space over the complex numbers.
This course focuses on the Weyl algebra; familiarity with sheaf theory is not required.

1.1 The Weyl algebra

Definition 1.1. The (n-th) Weyl algebra, denoted Dn or just D if the number of variables
is clear from the context, is the algebra obtained from the free algebra over C generated by
variables x1, . . . , xn and partial derivatives ∂1, . . . , ∂n

D := C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩ (1.1)

by imposing the following relations: all generators are assumed to commute, except ∂i and xi.
Their commutator [∂i, xi] := ∂ixi − xi∂i fulfills

[∂i, xi] = 1 for i = 1, . . . , n. (1.2)

This encodes precisely Leibniz’ rule for taking the derivative of the product of functions:
if f is a function of x, one has

∂ (xf)

∂x
− x

∂f

∂x
= xf ′ + f − xf ′ = 1 · f . (1.3)

The Weyl algebra gathers differential operators on Cn.1 Its elements are linear differential
operators with polynomial coefficients, i.e., as a set,

D =

{ ∑
α,β∈Nn

cα,βx
α∂β | cα,β ∈ C, only finitely many cα,β non-zero

}
,

where multi-index notation is used, i.e., xα = xα1
1 · · ·xαn

n and ∂β = ∂β1

1 · · · ∂βn
n .

We denote the action of a differential operator P ∈ D on a function f by a bullet, i.e.,
∂i • f = ∂f/∂xi, and so on. In order to stress that a function f depends on variables
x1, . . . , xn, we sometimes write f(x1, . . . , xn) for the function.

1To be precise, we are on affine n-space of C, i.e., the affine scheme An
C = Spec(C[x1, . . . , xn]). The closed

points of An
C are An

C(C) = Cn.
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Definition 1.2. The order of a differential operator P =
∑

α,β∈N cα,βx
α∂β ∈ D1 is

ord(P ) := max {β | ∃α s.t. cα,β ̸= 0} ,

i.e., the highest derivative that occurs in the associated linear ODE, P • f = 0.

Example 1.3 (Airy’s equation). Airy’s equation is the linear, second-order ODE

f ′′(x)− x · f(x) = 0 . (1.4)

Its solutions describe particles that are confined within a triangular potential well [45].
Moreover, it is the standard example to demonstrate Stokes’ phenomenon—a wall-crossing
phenomenon for the asymptotic behavior of the solution functions to (1.4), cf. [48]. To the
ODE in (1.4), we associate the differential operator PAiry = ∂2 − x. Its C-vector space of
holomorphic solutions is spanned by Airy’s functions of first and second kind, Ai and Bi:

Ai(x) =
1

π

∫ ∞

0

cos

(
t3

3
+ xt

)
dt ,

Bi(x) =
1

π

∫ ∞

0

[
exp

(
−t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt .

(1.5)

Algebraically, Airy’s function Ai is encoded by the differential operator PAiry together with
the following two initial conditions, which pick out Ai from the two-dimensional solution
space of (1.4):

f(0) =
1

32/3Γ
(
2
3

) and f ′(0) = − 1

31/3Γ
(
1
3

) , (1.6)

where Γ(·) denotes the gamma function. ⋄

Exercise 1.4 (Commutators [36, 1.2.4]). Prove that

(1) [∂ℓ
i , xi] = ℓ∂ℓ−1

i ,

(2) [∂i, x
k
i ] = kxk−1

i ,

(3) [∂ℓ
i , x

k
i ] =

∑
j≥1

k(k−1)···(k−j+1)·ℓ(ℓ−1)···(ℓ−j+1)
j!

xk−j
i ∂ℓ−j

i ,

where, by convention, negative powers are 0. ⋄

Definition 1.5. The operator θi := xi∂i ∈ D is called i-th Euler operator.

Theorem 1.6 (Converse of Euler’s homogeneous function theorem). If f(x1, . . . , xn) is an-
nihilated by θ1+· · ·+θn−k, where k ∈ Z, then f is (positively) homogeneous of degree k, i.e.:

f(tx1, . . . , txn) = tk · f(x1, . . . , xn) for all t > 0 . (1.7)

4



Proof. Set g(t) = f(tx1, . . . , txn). Via the chain rule, differentiating g with respect to t yields

g′(t) = x1
∂f

∂x1

(tx1, . . . , txn) + · · ·+ xn
∂f

∂xn

(tx1, . . . , txn)

=
1

t
·
(
tx1

∂f

∂x1

(tx1, . . . , txn) + · · ·+ txn
∂f

∂xn

(tx1, . . . , txn)

)
.

(1.8)

Since (θ1 + · · ·+ θn) • f = k · f , we conclude that g′(t) = k/t · g(t) and hence

g′(t)

g(t)
=

k

t
. (1.9)

Integrating both sides of (1.9) yields that ln |g(t)| = ln(tk) + ln(C) for all t > 0 and thus
g(t) = Ctk. Plugging in t = 1 yields that C = g(1) and hence g(t) = tk · g(1). Written out,
this yields f(tx1, . . . , txn) = tk · f(x1, . . . , xn) for all t > 0.

1.2 Properties and D-modules

The rings C[∂1, . . . , ∂n] and C[θ1, . . . , θn] are commutative subrings of the Weyl algebra. The
first denotes linear PDEs with constant coefficients. Note that for z = 1/x, x∂x = −z∂z.
Hence, for elements of the C[θ1, . . . , θn], it is particularly easy to switch from 0 to ∞ and
vice versa. Further frequently used rings of differential operators are

DGn
m

:= C[x±1
1 , . . . , x±1

n ]⟨∂1, . . . , ∂n⟩ (1.10)

with coefficients in Laurent polynomials, which are exactly the global functions on the alge-
braic n-torus (C∗)n,2 and the rational Weyl algebra

Rn := C(x1, . . . , xn)⟨∂1, . . . , ∂n⟩ (1.11)

with coefficients in the field of rational functions

C(x1, . . . , xn) = {p/q | p, q ∈ C[x1, . . . , xn], q ̸= 0} . (1.12)

Since D is non-commutative, we have to distinguish between left and right D-ideals.
If not explicitly stated otherwise, we always mean left D-ideals, since those correspond to
systems of linear PDEs: if P • f = 0 for some P ∈ D, also QP • f = 0 for any Q ∈ D.
We will denote by ⟨P1, . . . , Pk⟩ the left D-ideal generated by P1, . . . , Pk ∈ D, and sometimes
by DP if k = 1. The Weyl algebra is simple as a ring, i.e., it does not contain any proper
two-sided ideal.

One important example of D-ideals are A-hypergeometric systems—also called GKZ
systems, named after Gelfand, Kapranov, and Zelevinsky [14]. They are determined by
an integer matrix A ∈ Zn×k and a parameter vector κ ∈ Cn. Consider the Weyl algebra
DA = C[cα |α ∈ A]⟨∂α |α ∈ A⟩ whose variables are indexed by the columns of A.

2To be precise, we are on the algebraic n-torus Gn
m = Spec(C[x±1

1 , . . . , x±1
n ]). The complex-valued points

of the algebraic n-torus are Gn
m(C) = (C∗)n, and DGn

m
= DGn

m
(Gn

m).
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Definition 1.7. The toric ideal associated to A is the binomial ideal

IA :=
〈
∂u − ∂v |u− v ∈ ker(A), u, v ∈ NA

〉
⊂ C[∂α |α ∈ A] , (1.13)

where u = (uα)α∈A ∈ NA, ∂u =
∏

α∈A ∂uα
α , and similarly for v. Let JA,κ be the ideal generated

by the entries of Aθ−κ where θ := (θα)α∈A and θα = cα∂α. The DA-ideal HA(κ) := IA+JA,κ

is called A-hypergeometric system (or GKZ system).

Sometimes, one assumes that the all-one vector is contained in the row space of A. This
implies that HA(κ) is regular holonomic; we will learn later in the course what this means.

Example 1.8 ([2, Example 4.2]). Let κ = (−ν1,−ν2, s) ∈ C3. Consider the matrix

A =

1 1 2 2 3 3
2 3 1 3 1 2
1 1 1 1 1 1

 ∈ Z3×6 . (1.14)

Using the Macaulay2 [17] package Dmodules [28], one computes that the toric ideal IA is
generated by 9 binomials, namely

IA =
〈
∂2∂5 − ∂1∂6, ∂3∂4 − ∂1∂6, ∂4∂

2
5 − ∂3∂

2
6 , ∂1∂

2
5 − ∂2

3∂6, ∂
2
4∂5 − ∂2∂

2
6 ,

∂1∂4∂5 − ∂2∂3∂6, ∂1∂
2
4 − ∂2

2∂6, ∂2∂
2
3 − ∂2

1∂5, ∂
2
2∂3 − ∂2

1∂4
〉
.

(1.15)

In the notation of (1.13), the first generator in (1.15) corresponds to the tuple of vectors
u = (0, 1, 0, 0, 1, 0) and v = (1, 0, 0, 0, 0, 1). The third generator to u = (0, 0, 0, 1, 2, 0) and
v = (0, 0, 1, 0, 0, 2), and so on. The ideal JA,κ is generated by the 3 operators

θ1+θ2+2θ3+2θ4+3θ5+3θ6+ν1, 2θ1+3θ2+θ3+3θ4+θ5+2θ6+ν2, θ1+θ2+θ3+θ4+θ5+θ6−s.

Together, these 12 operators generate HA(κ) ⊂ D6. ⋄

Exercise 1.9. Compute an A-hypergeometric system of your choice using Macaulay2.3 ⋄

Theorem 1.10 (Stafford). For every D-ideal I, there exist P,Q ∈ D such that I = ⟨P,Q⟩.

An algorithmic proof of the theorem can be found in [27].

Exercise 1.11. Compute two operators that generate the D4-ideal ⟨∂1, ∂2, ∂3, ∂4⟩, for in-
stance by running the the following lines in Macaulay2, using the package Dmodules.m2 [28].

loadPackage "Dmodules"

D = QQ[x1,x2,x3,x4,d1,d2,d3,d4,WeylAlgebra=>{x1=>d1,x2=>d2,x3=>d3,x4=>d4}];

I = ideal(d1,d2,d3,d4)

stafford I

As pointed out in the documentation, the current implementation of the command stafford

guarantees the in- and output ideals to be equal only in the rational Weyl algebra Rn. ⋄

3An online version of Macaulay2 is available at the following link: https://macaulay2.com/TryItOut/
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We now turn to modules over the Weyl algebra.

Definition 1.12. A D-module is a left D-module, i.e., an abelian group M together with a
left action of the Weyl algebra

• : D ×M −→ M, (P,m) 7→ P •m (1.16)

obeying the usual compatibility conditions, i.e., for all P,Q ∈ D and m,n ∈ M :

(i) (P ·Q) •m = P • (Q •m),

(ii) (P +Q) •m = P •m+Q •m,

(iii) P • (m+ n) = P •m+ P • n,

(iv) and 1 •m = m.

To a D-ideal I, one associates the D-module D/I ∈ Mod(D). In this sense, D-modules
are generalizations of systems of linear PDEs. Further typical examples of D-modules of a
different kind are function spaces, e.g., holomorphic functions Oan,4 rational functions C(x),
convergent C{x} or formal CJxK power series, or (complex-valued) Schwartz distributions.

Example 1.13 (Example 1.8 revisited). The D-module associated to a hypergeometric
system HA(κ) is typically denoted by MA(κ) = DA/HA(κ) ∈ Mod(DA). ⋄

Exercise 1.14. Let M ∈ Mod(D) such that M is finite-dimensional as a C-vector space.
Prove that M = 0. ⋄

In this course, we focus on D-modules of the form D/I for I a left D-ideal. In fact, by
a theorem of Stafford, every “holonomic” D-module is of that form. In other words, every
holonomic D-module is cyclic, i.e., it is generated by a single element.

Exercise 1.15 (n = 1). Determine for which a, b ∈ C there there exists a non-trivial left
D-linear morphism between the D-modules Ma := D/(x∂ − a) and Mb := D/(x∂ − b). ⋄

2 Gröbner deformations of D-ideals

This lecture investigates Gröbner deformations of D-ideals.

2.1 Initial ideals

Weight vectors for the Weyl algebra are allowed to be taken from the set

W = {(u, v) ∈ R2n |ui + vi ≥ 0, i = 1, . . . , n}. (2.1)

The vector (u, v) ∈ W assigns weight ui to xi and weight vi to ∂i. Among others, W contains
the set {(−w,w)|w ∈ Rn}. Every operator P in the Weyl algebra has a unique expansion

P =
∑

(α,β)∈E

cα,βx
α∂β, (2.2)

4Of course, holomorphic functions are always to be thought of locally, i.e., one means Oan(U) for some
appropriate domain U ⊂ Cn.
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called normally ordered expression of P , where cα,β ∈ C\{0} and E is a finite subset of N2n.
Unless stated otherwise, we always assume that differential operators are given in that form.

Definition 2.1. Fix a weight vector (u, v) ∈ W . The (u, v)-weight of a differential operator
P ∈ D (expressed as in (2.2)) is the number m = max(α,β)∈E (α · u+ β · v). If (u, v) is of the
form (−w,w) for some w ∈ Rn, the resulting number is called w-weight of P .

Example 2.2. Let P = θ1+ θ2+ θ3+1 ∈ D3 and w = (−1, 0, 1). The w-weight of θ1 = x1∂1
is (1, 0,−1,−1, 0, 1) · (1, 0, 0, 1, 0, 0) = 1− 1 = 0, and similarly for the remaining summands
of P . The w-weight of P hence is max{1− 1, 0 + 0,−1 + 1, 0} = 0. ⋄

Exercise 2.3. Consider the map [x∂, (·)] : D1 −→ D1, P 7→ [x∂, P ], which sends a differen-
tial operator to its commutator with the Euler operator. Find a closed formula for this map
which involves the w-weight for w = 1. Is this map D-linear? ⋄

Each weight vector (u, v) ∈ W introduces an increasing filtration F •
(u,v)(D) of the Weyl

algebra, namely

· · · ⊆ F k−1
(u,v)(D) ⊆ F k

(u,v)(D) ⊆ F k+1
(u,v)(D) ⊆ · · · (2.3)

where F k
(u,v)(D) denotes the vector space

F k
(u,v)(D) =

 ∑
{(α,β) |α·u+β·v≤k} finite

cα,βx
α∂β

 . (2.4)

They fulfill F k
(u,v)(D) · F ℓ

(u,v)(D) ⊆ F k+ℓ
(u,v)(D) and

⋃
k F

k
(u,v)(D) = D. For (u, v) = (1, . . . , 1),

the resulting filtration is called Bernstein filtration. For (u, v) = (0, 1), where 0 ∈ Rn and 1
denotes the all-one vector in Rn, the obtained filtration is the order filtration of D.

Exercise 2.4. Let (u, v) ∈ W and consider the induced filtration F •
(u,v)(D). Prove that the

associated graded ring gr(u,v)(D) =
⊕

k F
k
(u,v)(D)/F k−1

(u,v)(D) is

gr(u,v)(D) =


D if u+ v = 0,

C[x1, . . . , xn, ξ1, . . . , ξn] if u+ v > 0,

a mixture of the above otherwise.

(2.5)

In the equation above, u+ v > 0 means ui + vi > 0 for all i = 1, . . . , n. ⋄

Definition 2.5. The initial form of a differential operator P ∈ D \ {0} is

in(u,v)(P ) =
∑

α·u+β·v=m

cα,β
∏

uk+vk>0

xαk
k ξβk

k

∏
uk+vk =0

xαk
k ∂βk

k ∈ gr(u,v) (D) , (2.6)

and in(u,v)(P ) = 0 if P = 0.
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In the definition, the ξk are new variables that commute with all others. The initial
form is an element in the graded ring gr(u,v)(D). The case when u is the zero vector and v
is the all-one vector 1 = (1, . . . , 1) is of particular interest. Analysts refer to in(0,1)(P ) as the
principal symbol of the differential operator P ; it is an ordinary polynomial in 2n variables.

Example 2.6. The principal symbol of P1 = x2∂ + 1 is in(0,1)(P1) = x2ξ ∈ C[x][ξ]. The
principal symbol of P2 = x1∂1 + x2∂2 + 2x7

2 is in(0,1)(P2) = x1ξ1 + x2ξ2 ∈ C[x1, x2][ξ1, ξ2]. ⋄

A further important special case is if the weight vector is of the form (u, v) = (−w,w)
for some w ∈ Rn. In that case, one denotes the initial form of P short-hand by inw(P ).

Definition 2.7. Let (u, v) ∈ W and I a D-ideal. The initial ideal in(u,v)(I) of I with respect
to (u, v) is the gr(u,v)(D)-ideal generated by the initial forms of all elements of I. In symbols,

in(u,v)(I) =
〈
in(u,v)(P ) |P ∈ I

〉
⊂ gr(u,v)(D) . (2.7)

Example 2.8. For I = ⟨x1∂2, x2∂1⟩ ⊂ D2 and (u, v) = (0, 1) = (0, 0, 1, 1) ∈ R4, the initial
ideal of I is the C[x1, x2][ξ1, ξ2]-ideal

in(0,1)(I) =
〈
x1ξ2, x2ξ1, x1ξ1 − x2ξ2, x

2
2ξ2, x2ξ

2
2

〉
. (2.8)

This can be obtained by running the code

LIB "dmod.lib";

def D2 = makeWeyl(2); setring D2;

ideal I = x(1)*D(2), x(2)*D(1);

def CV = charVariety(I); setring CV; charVar;

in the computer algebra system Singular [12].5 It uses the D-module libraries [4]. ⋄

Note bene. As the above example demonstrates, it is in general not sufficient to take only
the initial forms of generators of the D-ideal into account.

It is important to understand how the initial ideal of a D-ideal changes as one lets the
weight vector vary. This information is encoded in the Gröbner fan of the D-ideal. It is a
finite polyhedral fan in R2n with support W such that the initial ideal in(u,v)(I) ⊂ gr(u,v)(Dn)
is constant as (u, v) ranges over any of its open cones.

Definition 2.9. The small Gröbner fan of a D-ideal I is the restriction of the Gröbner fan
to set of weight vectors {(u, v) |u+ v = 0} ≃ Rn.

Hence, the cones of the small Gröbner fan of I are in one-to-one correspondence with the
initial ideals in(−w,w)(I).

Definition 2.10. A weight vector is generic for I if it lies in an open cone of the small
Gröbner fan of I.

Definition 2.11. A Gröbner deformation of a D-ideal I is the left D-ideal in(−w,w)(I) for
some generic weight vector w ∈ Rn.
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Figure 1: The small Gröbner fan of the D-ideal I3(4, 2, 2, 2), here drawn in R3
w/R(1, 1, 1) in

the orthogonal basis {v1, v2} = {(1, 0,−1), (−1, 2,−1)}.

Example 2.12 ([20, (2.6)]). Let I3(c0, c1, c2, c3) = ⟨P1, P2, P3⟩ be the D-ideal generated by

P1 = 4(x1∂
2
1 − x3∂

2
3) + 2(2 + c0 − 2c1)∂1 − 2(2 + c0 − 2c3)∂3 ,

P2 = 4(x2∂
2
2 − x3∂

2
3) + 2(2 + c0 − 2c2)∂2 − 2(2 + c0 − 2c3)∂3 ,

P3 = (2c0 − c1 − c2 − c3) + 2(x1∂1 + x2∂2 + x3∂3) .

(2.9)

This D-ideal arises in the study of conformally-invariant Feynman integrals. Its small
Gröbner fan for c = (4, 2, 2, 2) is depicted in Figure 1, where one exploits homogeneity
of the system with respect to the vector (1, 1, 1) to draw the fan in 2-dimensional space. One
obtains it by explicitly computing initial ideals of I. ⋄

Exercise 2.13. Let w = (−1, 0, 1). In Figure 1, w corresponds to the vector (−1, 0) = −v1
and is depicted in blue color. The initial ideal of I3(4, 2, 2, 2) with respect to w is

inw(I) = ⟨ (θ3 + 1)∂3, (θ2 + 1)∂2, θ1 + θ2 + θ3 + 1 ⟩ . (2.10)

This can be obtained by running the following code in Singular line by line:

LIB "dmodapp.lib";

def D3 = makeWeyl(3); setring D3;

poly P1 = x(1)*D(1)^2-x(3)*D(3)^2+D(1)-D(3);

poly P2 = x(2)*D(2)^2-x(3)*D(3)^2+D(2)-D(3);

poly P3 = x(1)*D(1)+x(2)*D(2)+x(3)*D(3)+1;

ideal I = P1,P2,P3; intvec w = (-1,0,1);

def inwI = initialIdealW(I,-w,w); inwI;

Choose some more weight vectors from different cones and rays of the Gröbner fan in Figure 1
and compute the corresponding initial ideals of the D3-ideal I3(4, 2, 2, 2). ⋄

5An online version of Singular is available at the following link: https://www.singular.uni-kl.de:8003/
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2.2 Indicial ideals

Fix an integer n ≥ 1. The algebraic n-torus T := (C\{0})n naturally acts on the Weyl
algebra, namely by scaling the generators ∂i and xi in a reciprocal manner:

◦ : T ×D −→ D, (t, ∂i) 7→ ti∂i , (t, xi) 7→
1

ti
xi .

Definition 2.14. A D-ideal I is said to be torus-fixed if t ◦ I = I for all t ∈ T .

Torus-fixed D-ideals play the role of monomial ideals in an ordinary commutative poly-
nomial ring. They can be described as follows:

Proposition 2.15 ([37, Lemma 2.3.1 and Theorem 2.3.3]). A D-ideal is torus-fixed if and
only if one of the equivalent properties holds:

(1) I = in(−w,w)(I) for all w ∈ Rn.

(2) I is generated by operators xap(θ)∂b where a, b ∈ Nn and p ∈ C[θ1, . . . , θn].

Definition 2.16. The distraction of a D-ideal I is the C[θ1, . . . , θn]-ideal

Ĩ := RnI ∩ C[θ1, . . . , θn] . (2.11)

Example 2.17. Let I = ⟨∂3
1 , ∂1∂2, ∂

2
2⟩. The points under the staircase diagram of I are

(0, 0), (1, 0), (2, 0), (0, 1), as shown in Figure 2.

0 1 2 3 4
0

1

2

3

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: The staircase diagram of I = ⟨ ∂3
1 , ∂1∂2, ∂

2
2 ⟩.

The distraction of I is the radical ideal

Ĩ =
〈
θ1(θ1 − 1)(θ1 − 2) , θ1θ2 , θ2(θ2 − 1)

〉
= ⟨θ1, θ2⟩ ∩ ⟨θ1 − 1, θ2⟩ ∩ ⟨θ1 − 2, θ2⟩ ∩ ⟨θ1, θ2 − 1⟩ .

To see that, it helps to recall that θ2i = x2
i∂

2
i + xi∂i, and θ3i = x3

i∂
3
i + 3x2

i∂
2
i + xi∂i. Observe

that, for this example,

Sol(I) = Sol(Ĩ) = C ·
{
1, x1, x

2
1, x2

}
(2.12)

on the level of solutions. ⋄
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Definition 2.18. A Dn-ideal F is called Frobenius ideal if it can be generated by elements
of C[θ1, . . . , θn].

Frobenius ideals hence are of the form F = DnJ with J an ideal in C[θ1, . . . , θn].

Definition 2.19. Let w ∈ Rn. The indicial ideal of I (with respect to w) is

indw(I) := ˜in(−w,w)(I) = Rn · in(−w,w)(I) ∩ C[θ1, . . . , θn] . (2.13)

The zeros of indw(I) in Cn are called the exponents of I with respect to w.

Section 9 will justify the name “exponent”. There, we will also see that the space of
solutions to the system of PDEs encoded by a Frobenius ideal can be described explicitly
when the given ideal in C[θ1, . . . , θn] is Artinian, i.e., if the Krull dimension of C[θ]/J is 0.

Example 2.20. Consider the D1-ideal I = ⟨x2∂2 − x∂ + 1− x⟩ and set w = 1. The indicial
ideal indw(I) is the principal ideal in C[θ] generated by θ2− 2θ+1. This polynomial has the
unique zero A = 1; it is of multiplicity 2. Hence, 1 is the only exponent of I. ⋄

Exercise 2.21. Compute the exponents of the D-ideal I3(4, 2, 2, 2) from Example 2.12 for
the weight w = (−1, 0, 1). ⋄

3 The characteristic variety

In this lecture, we introduce the characteristic variety of a D-ideal I. This algebraic variety
is the main ingredient for defining holonomicity as well as for defining the singular locus of I.

3.1 Holonomicity

Denote by (0, 1) the vector (0, . . . , 0, 1, . . . , 1) ∈ R2n.

Definition 3.1. Let I be a D-ideal. The C[x1, . . . , xn, ξ1, . . . , ξn]-ideal in(0,1)(I) is called the
characteristic ideal of I.

We already saw an example of a characteristic ideal in Example 2.8.

Definition 3.2. The characteristic variety of a D-ideal I is the vanishing set of the charac-
teristic ideal, i.e.,

Char(I) := V
(
in(0,1)

)
=

{
(x, ξ) | p(x, ξ) = 0 for all p ∈ in(0,1)(I)

}
⊆ C2n. (3.1)

In order to remember the variables’ names, one sometimes writes Cn
x × Cn

ξ for C2n in (3.1).

The irreducible components of an affine variety V (I) ⊂ Cn are obtained by the primary
decomposition of its defining ideal I ⊂ C[x1, . . . , xn]. Recall that an ideal q ⊂ C[x1, . . . , xn]
is primary if, whenever p, q ∈ q, it follows that p ∈ q or q ∈ q or p, q ∈ √

q, where

√
q = {p ∈ C[x1, . . . , xn] | pm ∈ q for some m > 0} (3.2)

12



denotes the radical of q. Every ideal I ⊂ C[x1, . . . , xn] has an irredundant decomposition

I = q1 ∩ · · · ∩ qk (3.3)

into primary ideals. The qi are not uniquely determined, but their underlying prime ideals
pi :=

√
qi are; these are the associated primes of I. Irredundancy means that removing any of

the primary ideals qi would change the intersection (3.3), and the
√
qi are pairwise distinct.

The variety V (I) has a unique irredundant decomposition into irreducible algebraic varieties

V (I) =
⋃

pi minimal

V (pi) . (3.4)

Here, the union is taken over all associated prime ideals that are minimal over I.

Example 3.3. Consider the C[x, y, z]-ideal

I =
〈
(x+ y + z − 1)2 · (xz − (x+ y)y)

〉
. (3.5)

The variety V (I) is plotted in Figure 3. Its associated primary ideals and their underlying
primes are ⟨(x + y + z − 1)2⟩ with underlying prime ⟨x + y + z − 1⟩, and the prime ideal
(xz − (x+ y)y). This can be obtained by running the following code in Singular.

LIB "primdec.lib";

ring r = 0,(x,y,z),dp; setring r;

ideal I = (x+y+z-1)^2*(x*z-(x+y)*y);

list pr = primdecGTZ(I); pr;

Figure 3: The real-valued points of the variety V ((x+ y + z − 1)2(xz − (x+ y)y)).

The variety V (I) decomposes into the purple projective surface and the orange hyperplane.
The curve obtained as their intersection has an interpretation as a discrete statistical model
taking 3 states. This is the viewpoint of likelihood geometry [22]. ⋄
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Exercise 3.4. Consider the D1-ideal I = ⟨∂2, x∂−1⟩. Compute the characteristic ideal of I
as well as its associated primes. ⋄

The following theorem was established by Sato, Kawai, and Kashiwara in [38].

Theorem 3.5 (Fundamental Theorem of Algebraic Analysis). Let 0 ⊊ I ⊊ D be a D-ideal.
Every irreducible component of its characteristic variety Char(I) has dimension at least n.

Definition 3.6. A D-ideal (or its associated D-module D/I) is called holonomic if the
dimension of its characteristic ideal is n, i.e., as small as possible.

Exercise 3.7. Let f = x3
1 − x2

2 ∈ C[x1, x2] and consider the D2-ideal

I =
〈
f∂1 +

∂f

∂x1

, f∂2 +
∂f

∂x2

〉
. (3.6)

Is I holonomic? Find a non-constant function that is annihilated by I. ⋄

Definition 3.8. A function f(x1, . . . , xn) is holonomic if its annihilator

AnnDn(f) := {P ∈ Dn |P • f = 0} (3.7)

is a holonomic Dn-ideal.

Definition 3.9. The holonomic rank of a Dn-ideal I is

rank(I) := dimC(x) (Rn/RnI) = dimC(x)
(
C(x)[ξ]/C(x)[ξ] in(0,1)(I)

)
. (3.8)

The second equality in (3.8) follows from standard arguments in Gröbner basis theory.

Note bene. If I is holonomic, it follows that rank(I) < ∞. The reverse implication is not
true. To see this, compute the holonomic rank of the non-holonomic D-ideal in Exercise 3.7.

Example 3.10. Consider the D2-ideal I = ⟨∂1x1∂1, ∂
2
2 + 1⟩. The holonomic rank of I is 4,

since {1, ∂1, ∂2, ∂1∂2} is a basis of the C(x1, x2)-vector space R2/R2I. ⋄

Example 3.11 (GKZ systems). Let A be an n× k integer matrix. Its normalized volume,
denoted vol(A), is the volume of the union of the convex hull of the columns of A and the
origin, scaled with respect to the standard n-simplex having volume 1. It is a lower bound
for the holonomic rank of HA(κ): for all parameters κ ∈ Cn, one has the inequality

rank(HA(κ)) ≥ vol(A) . (3.9)

Equality holds for generic κ, but the identity may fail for special κ; see [37, Example 4.2.7]. ⋄

Exercise 3.12. Compute the holonomic rank of the GKZ system HA(κ) from Example 1.8
for a parameter κ ∈ C3 of your choice. Compare this number to vol(A). ⋄
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3.2 Singular locus

Let I, J be ideals in a polynomial ring C[x1, . . . , xn]. The saturated ideal (I : J∞) with respect
to J is the ideal

(I : J∞) :=
⋃
k≥1

(
I : Jk

)
, (3.10)

where (I : Jk) denotes the ideal quotient {p ∈ C[x1, . . . , xn] | pJk ⊂ I}. The variety of
(I : J∞) is the Zariski closure of V (I) \ V (J). Geometrically, taking a saturation hence
means to remove the component cut out by J (and takes the closure of the resulting set).

Exercise 3.13. Consider the C[x, y, z]-ideals I = ⟨x2yz⟩ and J = ⟨xy⟩. Compute (I : J∞)
and visualize their varieties. ⋄

Definition 3.14. The singular locus Sing(I) of I is the variety in Cn defined as

Sing(I) := V
((
in(0,1)(I) : ⟨ξ1, . . . , ξn⟩∞

)
∩ C[x1, . . . , xn]

)
. (3.11)

Geometrically, the singular locus of I is the closure of the projection of Char(I)\(Cn × {0})
onto the first n coordinates of C2n = Cn

x × Cn
ξ .

Remark 3.15. Outside the singular locus of a D-ideal I, the solutions to I form a vector
bundle of rank rank(I). ⋄

If I = DP for some P ∈ D, we sometimes also write Sing(P ) for Sing(I). In case n = 1
and I = DP for some P =

∑
k ak∂

k ∈ D, the singular locus is given be the vanishing locus
of the polynomial aord(P ). As a formula,

Sing(P ) = V (aord(P )) = {x ∈ C | aord(P )(x) = 0} . (3.12)

Example 3.16. Let P1 = x∂2 + ∂ and P2 = x2∂ + 1. Their singular loci are equal, they are
Sing(P1) = Sing(P2) = {0} ⊂ C. ⋄

Example 3.17 (Example 3.10 revisited). Let I = ⟨x1∂
2
1 + ∂1, ∂

2
2 + 1⟩. A computation in

Singular reveals that its characteristic ideal is ⟨ξ22 , x1ξ
2
1⟩ ⊂ C[x1, x2][ξ1, ξ2]. Hence Sing(I)

is the coordinate hyperplane V (x1) ⊂ C2. ⋄

Example 3.18. Let I = ⟨x1∂2, x2∂1⟩ ⊂ D2. Its singular locus is Sing(I) = V (x1, x2) = {0},
and its solution space is Sol(I) = C · 1. This simple example demonstrates that points in
the singular locus may be singularities of its solutions, but do not have to be. ⋄

Example 3.19 (Example 2.12 continued). The singular locus of I3(4, 2, 2, 2) is

Sing (I3(4, 2, 2, 2)) = V (x1x2x3 · λ) ⊂ C3 , (3.13)

where λ denotes the the Källén polynomial

λ = x2
1 + x2

2 + x2
3 − 2 (x1x2 + x1x3 + x2x3) . (3.14)

Hence, the singular locus of I3(4, 2, 2, 2) is the union of the cone shown in Figure 4 and the
coordinate hyperplanes {xi = 0}, i = 1, 2, 3. ⋄
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Figure 4: The real vanishing locus of the Källén polynomial.

Example 3.20. The singular locus of a GKZ system HA(κ) is the variety cut out by the
so called “principal A-determinant”, see [15, Remark 1.8]. Is is a product of individual
discriminants to polynomial systems, one for each face of the cone over A; see [14, 37] for the
precise statement, and the survey [33] of GKZ systems pointing to plenty of related work. ⋄

4 Solutions and their singularities

In this lecture, we investigate solutions of D-ideals and, in particular, their singularities.

4.1 Solution space

We write Mod(D) for the category of left D-modules.

Definition 4.1. Let I be a D-ideal and M ∈ Mod(D). The solution space of I in M is the
C-vector space

SolM(I) := {m ∈ M | P •m = 0 for all P ∈ I} . (4.1)

Also holomorphic functions Oan on (subsets of) Cn are a D-module; they carry a natural
left action of the Weyl algebra. Unless stated otherwise, we will deal with holomorphic
solutions on a suitable open domain in Cn, and we drop the subscript in (4.1) to mean such
solutions, i.e., we denote

Sol(I) = SolOan(I) = {f ∈ Oan |P • f = 0 for all P ∈ I} (4.2)

for suitable U ⊂ Cn. The solution space of a D-module can be recovered completely al-
gebraically. For two D-modules M,N ∈ Mod(D), denote by HomD(M,N) the space of
morphisms of left D-modules. Now let I = DP for some P ∈ D. The C-vector spaces

HomDan (Dan/DanP,Oan) ∼= {f ∈ Oan | P • f = 0} (4.3)
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are isomorphic. All is to be read in the analytified setup, i.e., Dan = C{x}⟨∂⟩: otherwise,
one would neglect solutions like exp, and so on. For the sake of friendlier notation, we will
drop the superscript (·)an in the rest of this paragraph. The isomorphism (4.3) is obtained
by combining the isomorphisms

HomD(D/DP,O) ∼= {φ ∈ HomD(D,O) |φ(P ) = 0} (4.4)

and

HomD(D,O) ∼= O, φ 7→ φ(1) , (4.5)

cf. [21, p. 2] for more details. This implies that the space of holomorphic solutions Sol(I)
of I is isomorphic to HomD (D/I,O).

Remark 4.2. One may look for solutions of a D-module M in any D-module N : by what
was argued above, the vector space HomDan(Man, Nan) encodes the solutions of M in N . ⋄

Theorem 4.3 (Cauchy–Kovalevskaya–Kashiwara). Let I be D-ideal and let U be an open
subset of Cn \ Sing(I) that is simply connected. If I is holonomic, then the space of holo-
morphic functions on U that are solutions to I has dimension equal to rank(I), i.e.,

dim(Sol(I)) = rank(I) . (4.6)

Example 4.4 (Example 3.10 revisited). Let I be theD2-ideal ⟨∂1x1∂1, ∂
2
2+1⟩. Its holonomic

rank is rank(I) = 4. On simply connected domains outside Sing(I) = V (x1), the solution
space is 4-dimensional and equals

Sol(I) = C ·
{
sin(x2), cos(x2), log(x1) sin(x2), log(x1) cos(x2)

}
. (4.7)

Indeed, the only singularities occurring are along the coordinate hyperplane {x1 = 0}. ⋄

4.2 Regular vs. irregular singularities

The singular locus of a D-ideal encodes where solutions of the system of PDEs encoded by
the D-ideal may have singularities. From a D-ideal, we cannot only read where its solutions
may have singularities, but we can also read their growth behavior when approaching points
of the singular locus. Depending on the growth behavior of its solutions at singular points,
a D-ideal is called regular singular or irregular singular. We here focus on the univariate
case. The multivariate case is more involved: for proving that a Dn-ideal for n > 1 is regular
singular, one would need to check that its restriction to all curves is regular singular; we
refer to [37, Section 2.4] for a discussion of regularity in the multivariate case. For the rest
of this section, we stick to n = 1. Our presentation here closely follows Section 5 of [47].

Definition 4.5. Let ρ : (a, b) → R>0 be some positive continuous function. The open sector
S = S(a, b, ρ) is the set of non-zero complex numbers

S(a, b, ρ) := {z ∈ C \ {0} | arg(z) ∈ (a, b) and |z| < ρ(arg(z))} . (4.8)

17



Definition 4.6. A function f ∈ Oan(S(a, b, ρ)) is of moderate growth on S if there exists an
integer N and a real number c > 0 such that |f(x)| < c · |x|N on S.

Definition 4.7 ([47, p. 146]). A differential operator P has solutions of moderate growth at
x = 0 if on any open sector S = S(a, b, ρ) with |a− b| < 2π and sufficiently small ρ, there is
a basis of solutions to P all of which have moderate growth on S.

Example 4.8. The complex logarithm has moderate growth at x = 0. The exponential
function exp(1/x) does not have moderate growth at x = 0: as x approaches 0, it grows
faster than any power of x. ⋄

Definition 4.9. Let x0 ∈ Sing(I). A D-ideal is regular singular at x0 if there exists a
fundamental system of solutions that have moderate growth at x0. The ideal I (or its
associated D-module D/I) is regular singular (as system on P1) if it is regular singular
everywhere, including at infinity. Otherwise, it is called irregular singular.

In this terminology, also non-singular points are counted as regular singular points.

Definition 4.10. We denote by val : C((x)) → R ∪ {∞} the following non-Archimedean
valuation on the field of formal Laurent series:

val(ak) := min {j | ak,j ̸= 0} (4.9)

for non-zero ak =
∑∞

j=−N ak,jx
j ∈ C((x)), and val(0) = ∞.

Recall that non-Archimedean valuation on a field K are maps v : K → R ∪ {∞} that
fulfill the following three properties:

(1) v(x) = ∞ if and only if x = 0,

(2) v(x · y) = v(x) + v(y) for all x, y ∈ K,

(3) v(x+ y) ≥ inf{v(x), v(y)}.

Now let P =
∑

k ak∂
k ∈ D, with ak =

∑
j ak,jx

j ∈ C[x].

Definition 4.11. The Newton polygon of P =
∑

k ak∂
k ∈ D, denoted N(P ), is the convex

hull of the set ⋃
{k | ak ̸=0}

{
(k, k − val(ak))− N2

}
⊂ R2 . (4.10)

The slopes of P are the non-vertical slopes of its Newton polygon N(P ).

Both Definition 4.10 and 4.10 can be extended to other rings of coefficients, such as
convergent power series C{x} or formal Laurent series C((x)). The Newton polygon encodes
the nature of a singularity of an operator P ∈ D1 at 0 in the following sense.

Proposition 4.12. A differential operator P ∈ D1 is regular singular at 0 if and only if its
Newton polygon N(P ) is a quadrant, i.e., if P has no non-zero slopes.
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Example 4.13. Consider P1 = x∂2 + ∂. Its solutions space is Sol(DP1) = C · {1, ln}, hence
P1 is regular singular at 0. The Newton polygon of P1 is depicted in Figure 5. Indeed, it has
only slopes zero. Recall that, in order to be well-defined, the complex logarithm requires to
take a branch cut out of the complex plane. ⋄

Example 4.14. Consider P2 = x2∂ + 1. Its solutions space is spanned by exp(1/x), which
has an essential singularity at x = 0. Hence, the P2 is irregular singular at x = 0. The
Newton polygon of P2 is depicted in Figure 5. Indeed, it has the non-zero slope −1. ⋄
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Figure 5: Newton polygons of P1, P2, P3 from Examples 4.13–4.15.

The solutions of a D-ideal naturally encode the monodromy data of the D-ideal. This
information alone can not distinguish between D-ideals.

Example 4.15. Let P2 = x2∂ + 1 from Example 4.14 and P3 = x∂ + 1, so that

Sol(P2) = C · {exp(1/x)} and Sol(P3) = C · {1/x} . (4.11)

The two operators have the same singular locus, namely

Sing(P2) = Sing(P3) = {0} , (4.12)

and both induce the trivial representation of the fundamental group of C \ {0} in their
solutions space, since their solution spaces are spanned by holomorphic functions on the
punctured complex plane: the analytic continuation of the solution functions along a closed
path encircling the origin results in the same function. Yet, the D-modules D/DP2 and
D/DP3 are far from being isomorphic: P2 has an irregular singularity at the origin, whereas
P3 is regular singular at 0. ⋄

Example 4.16 (Airy). We apply the change of variables z = 1/x. Exploiting x∂x = −z∂z,
Airy’s operator PAiry = ∂2

x − x translates into

PAiry,z = z4∂2
z + 2z3∂z − 1/z . (4.13)

Its Newton polygon at z = 0 is displayed in Figure 6. It has the non-zero slope −3/2. Hence,
Airy’s equation is irregular singular at z = 0 (or, equivalently, at x = ∞). ⋄
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Figure 6: The Newton polygon of PAiry,z from Example 4.16.

Newton polygons also help to decompose D-modules. For that, we have to pass to the
Weyl algebra with coefficients in formal Laurent series, denoted C((x)). They are series of
the form

C((x)) = CJxK[x−1] =

{
∞∑

k=−N

ckx
k |N ∈ N, ck ∈ C

}
, (4.14)

without any convergence requirements being imposed. The resulting Weyl algebra is denoted

D̂[x−1] = C((x))⟨∂⟩ . (4.15)

Theorem 4.17 ([47, Theorem 3.48]). Let P ∈ D̂[x−1] be a monic differential operator such
that its Newton polygon N(P ) can be written as the Minkowski sum N1+N2 of two polygons
N1, N2 that have no slope in common. Then there are unique monic differential operators
P1, P2 such that N(Pi) = Ni and P = P1P2. Moreover, this factorization gives rise to an

isomorphism of D̂[x−1]-modules

D̂[x−1]/D̂[x−1]P ∼= D̂[x−1]/D̂[x−1]P1 ⊕ D̂[x−1]/D̂[x−1]P2 . (4.16)

Example 4.18 ([47, Example 3.46 ]). Let Q = xθ2+θ−1 = x3∂2+x2∂+x∂−1. It factorizes
as Q = Q1Q2 with Q1 = θ − 1 and Q2 = xθ + 1. Their Newton polygons are plotted in
Figure 7. We read that the Newton polygons of Q1 and Q2 have no slopes in common, and
that N(Q) = N(Q1) +N(Q2). We conclude from Theorem 4.17 that

C((x))⟨∂⟩/C((x))⟨∂⟩Q ∼= C((x))⟨∂⟩/C((x))⟨∂⟩Q1 ⊕ C((x))⟨∂⟩/C((x))⟨∂⟩Q2 (4.17)

are isomorphic as D̂[x−1]-modules. ⋄
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Figure 7: Newton polygons of Q, Q1, and Q2 from Example 4.18.

5 Operations on D-modules

This lecture treats integral transforms and further modifications of functions through the
lens of algebraic analysis.

5.1 Integral transforms

The Fourier(–Laplace) transform of a function f : R>0 → C is

F{f}(t) =

∫
R>0

f(x)e−xt dx . (5.1)

This integral converges if f ∈ L1. Assuming suitable vanishing conditions on the boundary
of the integration domain,6 one reads that

F{x · f}(t) = −∂t • F{f}(t) and F
{∂f
∂x

}
(t)

IBP
= t · F{f}(t) , (5.2)

where the second identity follows from integration by parts (IBP).
Algebraically, the Fourier–Laplace transform is the isomorphism of Weyl algebras

F{·} : C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩ −→ C[t1, . . . , tn]⟨∂t1 , . . . , ∂tn⟩,
xi 7→ −∂ti , ∂i 7→ ti ,

(5.3)

reflecting the rules in (5.2).

Example 5.1 (Airy). The Fourier–Laplace transform of PAiry = ∂2 − x is

F
{
PAiry

}
= t2 + ∂t ∈ C[t]⟨∂t⟩ . (5.4)

6One possible option is to assume that f has rapid decay at 0 and ∞, i.e., it decays faster than any power
of x, as x approaches 0 or ∞. By adapting the integration contour, one can get rid of the strict assumption
of rapid decay. Borel–Moore homology constitutes the right framework for that.
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The solution space of F{PAiry} is spanned by the exponential function exp(−t3/3). The so-
lutions of Airy’s equation are then obtained by taking the inverse Fourier–Laplace transform
of exp(−t3/3), i.e., integrals of the form

F−1
{
e−t3/3

}
=

∫
Γi

e−t3/3ext dt . (5.5)

Figure 8 shows three integration contours Γ1,Γ2,Γ3 so that the integral in (5.5) converges.
Only two of the three are linearly independent: their composition can be contracted to a

Figure 8: [48, Figure 22.1]: Integration contours Γ1, Γ2, Γ3.

point on the Riemann sphere. The integrals over two such contours span the two-dimensional
solution space of Airy’s equation (1.4). ⋄

Via the isomorphism (5.3), we now define the Fourier–Laplace transform for D-modules.
Let M be a D-module. Its Fourier–Laplace transform F{M} is the following module over
the Weyl algebra Dt = C[t1, . . . , tn]⟨∂t1 , . . . , ∂tn⟩ in the t-variables. It is the same abelian
group, with the action of Dt induced by the isomorphism (5.3), i.e., for m ∈ M :

ti •m = −∂i •m and ∂ti •m = xi •m. (5.6)

Another integral transform that is in common use is the Mellin transform.

Definition 5.2. Let f be a function of n variables. The Mellin transform of f is defined to
be the function in the variables ν = (ν1, . . . , νn) given by

M{f}(ν) :=

∫
Γ

f xν dx

x
, (5.7)

where xν dx
x

denotes the n-form xν1
1 · · ·xνn

n
dx1

x1
∧ · · · ∧ dxn

xn
and Γ is an appropriately chosen

integration contour.
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Example 5.3. Let f(x) = exp(−x). Its Mellin transform is the gamma function:

M
{
e−x

}
(ν) = Γ(ν) =

∫ ∞

0

e−xxν−1 dx . (5.8)

For ν ∈ N>0, Γ(ν) = (ν − 1)! is the factorial. ⋄

Remark 5.4. Classically, the integration contour Γ = Rn
>0 in (5.7) is the positive orthant

in Rn. However, this imposes strong conditions on f for the integral (5.7) to converge.
One may instead adapt the integration contour Γ to the integrand: twisted cycles Γ ∈
Hn((C∗)n \ V (f), dlog(fxν)) ensure the convergence of the integral. Here, dlog denotes the
logarithmic differential, i.e., dlog(fxν) denotes the differential one-form 1

f

∑ ∂f
∂xi

dxi+
∑

νi
dxi

xi

with poles along V (f). The dependency on ν is discussed in detail in Section 3 of [2]. ⋄

The Mellin transform obeys the following rules:

M
{
xi · f

}
(ν) = M{f}(ν + ei) , M

{
xi ·

∂f

∂xi

}
(ν) = −νi · M{f}(ν) . (5.9)

The Mellin transformM{·} hence turns multiplication by x±1
i into shifting the new variable νi

by ±1, and the action of the ith Euler operator θi = xi∂i into multiplication by −νi.

Definition 5.5. The (n-th) shift (or difference) algebra with polynomial coefficients

Sn := C[ν1, . . . , νn]⟨σ±1
1 , . . . , σ±1

n ⟩ (5.10)

is obtained from the free C-algebra generated by {νi, σi, σ
−1
i }i=1,...,n by imposing the following

relations: all generators commute, except νi and the shift-operators σi. They obey the rule

σ±1
i νi = (νi ± 1)σ±1

i . (5.11)

This implies that σaνb = (ν + a)bσa for any a ∈ Zn, b ∈ Nn. The shift algebra naturally
comes into play when studying the Mellin transform of functions. There is a natural action
of Sn on the Mellin transform of functions: it shifts the variable νi by 1, i.e.,

σi •M{f}(ν) = M{f}(ν + ei) , (5.12)

which justifies the name “shift operator” and also explains the rule in (5.9). Mimicking the
rules in (5.9), the (algebraic) Mellin transform of [29] is the isomorphism of C-algebras

M{·} : DGn
m
−→ Sn , x±1

i 7→ σ±1
i , θi 7→ −νi . (5.13)

The notation M{·} is used both for the Mellin transform of functions and that of operators.
This is justified by the fact that M{·} is compatible with the action of the DGn

m
and Sn, i.e.,

M{P • f} = M{P} •M{f} . (5.14)
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Example 5.6 (Example 5.3 revisited). The function f(x) = exp(−x) is annihilated by
P = ∂ + 1. Its Mellin transform is

M{P} = M

{
1

x
x∂ + 1

}
= −σ−1ν + 1 = −(ν − 1)σ−1 + 1 . (5.15)

From P • f = 0, we conclude that M{P} •M{f} = 0. Writing this out yields

Γ(ν) = (ν − 1) · Γ(ν − 1) , (5.16)

a shift relation that one is familiar with from factorials. ⋄

Exercise 5.7. Let P = x2
1∂1∂2 + θ2 ∈ D2. Compute its Mellin transform M{P} ∈ S2. ⋄

5.2 Restricting and integrating

Proposition 5.8. Let f be a holonomic function in n variables and m < n. Then the
restriction of f to the coordinate subspace {xm+1 = · · · = xn = 0} is a holonomic function
of the variables x1, . . . , xm.

In the notation of the proposition, we will denote by Dm the Weyl algebra
C[x1, . . . , xm]⟨∂1, . . . , ∂m⟩ in the first m variables.

Proof. For i ∈ {m+ 1, . . . , n}, consider the right Dn-ideal xiDn. This ideal is a left module
over Dm = C [x1, . . . , xm] ⟨∂1, . . . , ∂m⟩. The sum of these ideals with AnnDn(f) is hence a
left Dm-module. By [37, Proposition 5.2.4], its intersection with Dm is

(AnnDn(f) + xm+1Dn + · · ·+ xnDn) ∩ Dm . (5.17)

is a holonomic Dm-ideal and it annihilates the restricted function f(x1, . . . , xm, 0, . . . , 0).

Definition 5.9. Let I be a Dn-ideal. The Dm-ideal

(I + xm+1Dn + · · ·+ xnDn) ∩ Dm (5.18)

is the restriction ideal of I to the coordinate subspace {xm+1 = · · · = xn = 0} ⊂ Cn.

Example 5.10 (Example 3.10 revisited). The restriction ideal of I = ⟨∂1x1∂1, ∂
2
2 +1⟩ to its

singular locus Sing(I) = {x1 = 0} is the C[x2]⟨∂2⟩-ideal ⟨∂2
2 +1⟩, which can be computed by

running the following lines in Singular with the library dmodapp lib.

LIB "dmodapp.lib";

def D2 = makeWeyl(2); setring D2;

ideal I = D(1)*x(1)*D(1), D(2)^2+1;

intvec w = 1,0;

def Ires = restrictionIdeal(I,w); setring Ires;

resIdeal;

The restriction ideal has holonomic rank 2. Its solution space is C · {cos(x2), sin(x2)}. ⋄
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Example 5.11. Let f(x1, x2) = (x1 + x2)
3. Since f is symmetric in its variables and

homogeneous of degree 3, it is annihilated by the hypergeometric D-ideal

I =
〈
θ1 + θ2 − 3, ∂1 − ∂2

〉
. (5.19)

The restriction of I to {x2 = 0} is the C[x1]⟨∂1⟩-ideal ⟨θ1 − 3, ∂4
1⟩. One checks that, indeed,

f(x1, 0) is annihilated by it. ⋄

The computation of restriction ideals is hard and terminates only for small examples. To
compute restriction ideals, the authors of [9] take a detour via Pfaffian systems; the latter
will be topic of Section 7. Their implementations are made available in Risa/Asir [32].

Definition 5.12. Let I be a Dn-ideal. The Dm-ideal(
I + ∂m+1Dn + · · ·+ ∂nDn

)
∩ Dm for m < n (5.20)

is called the integration ideal of I with respect to the variables xm+1, . . . , xn.

The expression is dual to the restriction ideal (5.18) under the Fourier transform (5.3).
If I = Ann(f) for a holonomic function f : Rn → C, the definite integral

F (x1, . . . , xn−1) =

∫ b

a

f(x1, . . . , xn−1, xn) dxn (5.21)

is a holonomic function inm = n−1 variables, assuming the integral exists, and is annihilated
by the integration ideal (5.20); see [39, Proposition 2.11] for a detailed discussion.

Example 5.13. Consider the D2-ideal I =
〈
θ1+1, θ2+1

〉
. It has holonomic rank 1 and its

solution space is spanned by the function f(x1, x2) =
1

x1x2
. The integration ideal of I with

respect to the variable x2 is the D1-ideal (I + ∂2D2) ∩D1 =
〈
θ1 + 1

〉
. Indeed, it annihilates

the integral
∫ b

a
f(x1, x2) dx2 = (ln |b| − ln |a|) · 1

x1
. ⋄

6 Holonomic functions

This lecture explains how to compute with holonomic functions and visits closure properties
of this function class. Zeilberger [50] was the first to study them in an algorithmic way.

6.1 Weyl closure of D-ideals

We recall from Definition 3.8 that a function f(x1, . . . , xn) is holonomic if its annihilator

AnnDn(f) = {P ∈ Dn |P • f = 0} (6.1)

is a holonomicDn-ideal. We here are relaxed about the function class—typically, one imposes
some analyticity assumption. In the univariate case, i.e., n = 1, a function f is holonomic if
and only if there exists a non-zero differential operator P ∈ D \ C[x] such that P • f = 0.
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Numerous functions in the sciences are holonomic, e.g., hypergeometric functions [33],
many trigonometric functions, some probability distributions, and many special functions
such as Airy’s or Bessel’s functions, polylogarithms, or the volume of compact semi-algebraic
sets [26]. By Theorem 4.3, holonomic function can be encoded by finite data, namely their
annihilating D-ideal together with rank(AnnD(f)) many initial conditions. This fact makes
holonomic functions well-suited to be handed to computer, and to be investigated by means
of computations with their annihilating D-ideal.

Exercise 6.1. Let r ∈ C(x)\{0} be a non-zero rational function. Prove that the annihilator
of r in the rational Weyl algebra R is generated by r∂ − ∂r

∂x
. ⋄

Exercise 6.2. Determine a holonomic annihilating D2-ideal of the function

f(x, y) = ex·y · sin y

1 + y2
. (6.2)

To do so, you may use the Mathematica package HolonomicFunctions [24]. The following
code returns two annihilating differential operators of f .

<< RISC‘HolonomicFunctions‘

f = Exp[x*y]*Sin[y*1/(1+y^2)]

ann = Annihilator[f,{Der[x],Der[y]}]

It remains to investigate the D2-ideal generated by them regarding holonomicity. ⋄

Sometimes, it is useful to slightly enlarge a considered D-ideal, namely the Weyl closure
of a D-ideal, as was introduced by Tsai [46].

Definition 6.3. The Weyl closure of a Dn-ideal I is the Dn-ideal

W (I) := RnI ∩Dn . (6.3)

A D-ideal is Weyl closed if W (I) = I.

Exercise 6.4. LetM be aD-module that is torsion-free as C[x1, . . . , xn]-module, and f ∈ M .
Prove that AnnD(f) is Weyl closed. ⋄

Example 6.5. Consider I = ⟨x∂⟩ ⊂ D1. Its Weyl closure is I = ⟨∂⟩. The solution space
of I is Sol(I) = C ·1, i.e., the solutions are constant functions only. Although Sing(I) = {0},
none of the solutions to I has a singularity there. Observe that 0 /∈ Sing(W (I)). If we allow
distributional solutions, we find that the Heaviside step function

H(x) =

{
0 if x < 0,

1 if x ≥ 0,
(6.4)

is a solution to I, since the distributional derivative of H is the Dirac delta δ. ⋄
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In general, it is a difficult task to compute the Weyl closure of a D-ideal.

Clearly, I ⊆ W (I). Hence, for the singular locus and the space of holomorphic solutions
to the system of PDEs encoded by I, one has

Sing(I) ⊇ Sing(W (I)) and Sol(I) ⊇ Sol(W (I)) . (6.5)

Moreover, rank(I) = rank(W (I)), since RnI = RnW (I). Since every element Q of W (I) can
be written as Q = r · P for some r ∈ C(x1, . . . , xn) and P ∈ I, we also have the inclusion
Sol(I) ⊆ Sol(W (I)). Hence, Sol(I) = Sol(W (I)). The first inclusion in (6.5) can be strict,
which can be seen for the D-ideal generated by P = x∂:

Sing(DP ) = {0}, whereas Sing(W (I)) = Sing(D∂) = ∅ . (6.6)

In summary, a D-ideal I and its Weyl closure W (I) have the same (classical) solution space,
W (I) might make the singular locus smaller, and might contain additional operators that
annihilate all solutions of I. We summarize these insights in

Proposition 6.6. Let I be a Dn-ideal and W (I) its Weyl closure. Then

(a) Sol(W (I)) = Sol(I) , (b) Sing(W (I)) ⊆ Sing(I) , (c) W (I) • Sol(I) = 0 .

If a D-ideal I has finite holonomic rank, it follows from [37, Theorem 1.4.15] that its Weyl
closureW (I) is holonomic. To prove that a function f(x1, . . . , xn) is holonomic, it is therefore
sufficient to find an annihilating D-ideal I of finite holonomic rank. If I ⊂ AnnDn(f) with
rank(I) < ∞, then its Weyl closure W (I) is a holonomic Dn-ideal with W (I) ⊂ AnnDn(f).
In particular this forces AnnDn(f) to be holonomic.

Exercise 6.7. Compute the Weyl closure of the D1-ideal generated by the operator

P = x2(x− 1)(x− 3)∂2 − (6x3 − 20x2 + 12x)∂ + (12x2 − 32x+ 12) . (6.7)

Compare the solution spaces and singular loci of I and W (I). ⋄

Proposition 6.8 ([16]). Let f be an element of a D-module M that is torsion-free as
C[x1, . . . , xn]-module. Then the following three conditions are equivalent:

(i) f is holonomic.

(ii) rank (AnnD(f)) < ∞.

(iii) For each i ∈ {1, . . . , n} there exists an operator Pi ∈ C[x1, . . . , xn]⟨∂i⟩\{0} that anni-
hilates f .

Proof. Let I = AnnD(f). If I is holonomic, then RI is a zero-dimensional ideal in R,
i.e., dimC(x)(R/RI) < ∞. This condition is equivalent to (ii) and (iii). For the implication
from (ii) to (i), we note that AnnD(f) is Weyl closed, since M is torsion-free. Finally,
rank (AnnD(f)) < ∞ implies that AnnD(f) = W (AnnD(f)) is holonomic.
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Remark 6.9. Let I = AnnD(f) be the annihilator of a holonomic function f , and fix
a point x0 ∈ Cn \ Sing(I). Let m1, . . . ,mn be the orders of the distinguished operators
P1, . . . , Pn ∈ I in Proposition 6.8 (iii). Thus, each Pk is a differential operator in ∂k of order
mk whose coefficients are polynomials in x1, . . . , xn. Suppose we impose initial conditions
by specifying complex numbers for the m1m2 · · ·mn many quantities(

∂i1
1 · · · ∂in

n • f
)
|x=x0 where 0 ≤ ik < mk for k = 1, . . . , n. (6.8)

The operators P1, . . . , Pn together with the initial conditions (6.8) determine the function f
uniquely within the vector space Sol(I). This specification is known as a canonical holonomic
representation of f ; see [50, Section 4.1]. ⋄

6.2 Closure properties of holonomic functions

From given holonomic functions, one can cook up more holonomic functions. We have already
seen that restrictions and definite integrals of holonomic functions are again holonomic.

Proposition 6.10. If f, g are holonomic functions (on the same domain), then both their
sum f + g and their product f · g are holonomic functions as well.

Proof. For each i ∈ {1, 2, . . . , n}, there exist non-zero operators Pi, Qi ∈ C[x]⟨∂i⟩, such that
Pi • f = Qi • g = 0. Set ni = ord(Pi) and mi = ord(Qi). The C(x)-span of

{
∂k
i • f

}
k=0,...,ni

is a vector space of dimension ≤ ni. Similarly, the C(x)-span of the set
{
∂k
i • g

}
k=0,...,mi

has dimension ≤ mi. Now consider ∂k
i • (f + g) = ∂k

i • f + ∂k
i • g. The C(x)-span of{

∂k
i • (f + g)

}
k=0,...,ni+mi

has dimension ≤ ni +mi. Hence, there exists a non-zero operator

Si ∈ C[x]⟨∂i⟩, such that Si • (f + g) = 0. Since this holds for all indices i, we conclude
that the sum f + g is holonomic. A similar proof works for the product f · g. For each
i ∈ {1, 2, . . . , n}, we now consider the set

{
∂k
i • (f · g)

}
k=0,1,...,nimi

. By applying Leibniz’ rule

for taking derivatives of a product, we find that the mini+1 elements of this set are linearly
dependent over the field C(x). Hence, there is a non-zero operator Ti ∈ C[x]⟨∂i⟩ such that
Ti • (f · g) = 0. We conclude that f · g is holonomic.

Proposition 6.11. Let f(x1, . . . , xn) be holonomic. Then its partial derivatives ∂i • f ,
i = 1, . . . , n, are holonomic functions as well.

Proof. Since f is holonomic, there exist Pi ∈ C[x1, . . . , xn]⟨∂i⟩, i = 1, . . . , n, such that
Pi • f = 0. Rewrite each Pi = P̃i∂i + ai with ai ∈ C[x1, . . . , xn]. If ai = 0, it follows
P̃i • (∂i • f) = 0. Now assume that ai is not the zero polynomial. Since both ai and f are
holonomic, so is their product and there exists Qi ∈ C[x1, . . . , xn]⟨∂i⟩ which annihilates their
product. Then QiP̃i • (∂i • f) = Qi • (−aif) = 0, proving that ∂i • f is holonomic.

Proposition 6.12. Let f(x) be a holonomic function. Its reciprocal 1/f is holonomic if and
only if the function f ′/f is algebraic.

For a proof, we refer to the article [18] of Harris and Sibuya. This implies that, for
instance, the function 1/ sin(x) is not holonomic. At the same time, this shows that, in
general, the composition of two holonomic functions (here 1/x and sin(x)) is in general not
holonomic. But there is a partial rescue.
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Proposition 6.13. Let f(x) be holonomic and g(x) algebraic. Then their composition
f(g(x)) is a holonomic function.

Proof. Let h := f ◦ g. By the chain rule, all derivatives h(i) can be expressed as linear
combinations of f(g), f ′(g), f ′′(g), . . . with coefficients in C[g, g′, g′′, . . .]. Since g is algebraic,
it fulfills some polynomial equation G(g, x) = 0. By taking derivatives of this equation, we
can express each g(i) as a rational function of x and g. We conclude that the ring C[g, g′, . . .] is
contained in the field C(x, g). Denote by W the vector space spanned by f(g), f ′(g), . . . over
C(x, g) and by V the vector space spanned by f, f ′, . . . over C(x). Since f is holonomic, V is
finite-dimensional over C(x). This implies that W is finite-dimensional over C(x, g). Since g
is algebraic, C(x, g) is finite-dimensional over C(x). It follows that W is a finite-dimensional
vector space over C(x), hence h = f ◦ g is holonomic.

The term “holonomic function” was first proposed by D. Zeilberger [50] in the context of
proving combinatorial identities. Building on Zeilberger’s work, algorithms for manipulating
holonomic functions were developed, among others by C. Koutschan. These are implemented
in his Mathematica package HolonomicFunctions [24]. By Proposition 6.13, every algebraic
function is holonomic. The following example illustrates this fact.

Example 6.14. Consider the function y = f(x) that is defined by y4 + x4 + xy
100

− 1 = 0.
Its annihilator in D can be computed in Mathematica as follows:

<< RISC‘HolonomicFunctions‘

q = y^4 + x^4 + x*y/100 - 1

ann = Annihilator[Root[q, y, 1], Der[x]]

This Mathematica code determines an operator P of lowest order in AnnD(f):

P = (2x4+1)2(25600000000x12−76800000000x8+76799999973x4−25600000000) ∂3

+6x3(2x4+1)(51200000000x12+76800000000x8−307199999946x4+179199999973) ∂2

+3x2(102400000000x16+204800000000x12+2892799999572x8−3507199999444x4

+307199999953) ∂ − 3x(102400000000x16 + 204800000000x12

+1459199999796x8 − 1049599999828x4 + 51199999993) .

This operator encodes the algebraic function y = f(x) as a holonomic function. ⋄

For some cases, the theory of differentially-algebraic (D-algebraic) functions provides a
rescue: they are zeroes of differential polynomials, which are part of the field differential alge-
bra [34]. For instance, Weierstrass’ elliptic function ℘ is not holonomic, but it is D-algebraic:
it fulfills the non-linear, algebraic differential equation (ADE)

℘′(x)
2
= 4℘(x)3 − c1℘(x)− c2, (6.9)

where c1 and c2 are constants depending on the periods of ℘. Hence, u = ℘ is a zero of the
differential polynomial

u′2 − 4u3 + c1u+ c2 ∈ C[u, u′, u′′, . . .] . (6.10)

Algorithms for arithmetic manipulations of D-algebraic functions can be found in [3].
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7 Encoding D-ideals

We here discuss how to encode D-ideals. For that, we need some basics about Gröbner bases.

7.1 Gröbner bases

Let (u, v) ∈ W be a weight vector for the Weyl algebra. For a subset G ⊂ D of the Weyl
algebra, we denote by

in(u,v)(G) = {in(u,v)(P ) |P ∈ G} ⊂ gr(u,v)(D) (7.1)

the set containing the initial forms of all elements of G.

Definition 7.1. Let I be a D-ideal. A finite set G ⊂ D of differential operators is a Gröbner
basis of I with respect to (u, v) if I is generated by G and if the initial ideal of I with respect
to (u, v) is generated by the initial forms of elements in G, i.e., if

in(u,v)(I) =
〈
in(u,v)(G)

〉
(7.2)

is an equality of gr(u,v)(D)-ideals.

Example 7.2. The characteristic ideal in Example 2.8 provides an example of a generating
set which is not a Gröbner basis with respect to the weight vector (0, 1) ∈ R4. ⋄

We will again use the normally ordered expression of differential operators from (2.2),
i.e., we write P ∈ D in the form

P =
∑

(α,β)∈E

cα,βx
α∂β. (7.3)

To speak about Gröbner bases, we will need to define total a total order ≺ on the set of
monomials xα∂β in D. Such an order is called a multiplicative monomial order if both

(1) 1 ≺ xi∂i for i = 1, . . . , n and

(2) xα∂β ≺ xa∂b implies xα+s∂β+t ≺ xa+s∂b+t for all (s, t) ∈ Nn × Nn.

Now let a multiplicative monomial order ≺ be fixed.

Definition 7.3. The initial monomial in≺(P ) of a differential operator P ∈ D is the mono-
mial xαξβ ∈ C[x, ξ] such that xα∂β is the ≺-largest monomial occurring in (7.3). The initial
ideal in≺(I) of a D-ideal I is the monomial C[x, ξ]-ideal generated by {in≺(P ) |P ∈ I}.

Definition 7.4. A finite set G ⊂ D is a Gröbner basis of I with respect to ≺ if I is generated
by G and in≺(I) is generated by in≺(G) = {in≺(P ) |P ∈ G}.
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A multiplicative monomial order ≺ is called a term order for D if 1 = x0∂0 is the
smallest element. This condition arises from the commutator relation (1.2) and guarantees
compatibility with multiplication, i.e., in≺(PQ) = in≺(P )·in≺(Q). For term orders, there are
no infinitely decreasing chains in D. Examples of term orders are the lexicographic order, the
reverse lexicographic order, elimination orders, and the graded reverse lexicographic order;
see for instance [10], one of the standard references for Gröbner bases. We here recall the
lexicographic and reverse lexicographic order for polynomial rings.

Example 7.5 (lex). Let S = C[x1, . . . , xn] be a polynomial ring and α, β ∈ Nn. The
lexicographic order is the following order:

xα ≻ xβ if the leftmost non-zero entry of α− β ∈ Zn is positive. (7.4)

For instance, x1 ≻ x2 ≻ · · · ≻ xn, x1x
2
2 ≻ x3

2x
4
3, and x3

1x
2
2x

4
3 ≻ x3

1x
2
2x3. ⋄

Example 7.6 (revlex). Let S = C[x1, . . . , xn] be a polynomial ring and α, β ∈ Nn. The
reverse lexicographic order is the following order:

xα ≻ xβ if the rightmost non-zero entry of α− β ∈ Zn is negative. (7.5)

For instance, again x1 ≻ x2 ≻ · · · ≻ xn and x1x
2
2 ≻ x3

2x
4
3, but x

3
1x

2
2x

4
3 ≺ x3

1x
2
2x3. ⋄

We now come back to monomials in the Weyl algebra.

Example 7.7 (degrevlex). Let α, β, a, b ∈ Nn. We denote |α| = α1+ · · ·+αn, and likewise
for β, a, b. The degree reverse lexicographic order is the order defined as follows:

xα∂β ≻ xa∂b if |α|+ |β| > |a|+ |b|, or |α|+ |β| = |a|+ |b| and the rightmost

non-zero entry of (α, β)− (a, b) ∈ N2n is negative.
(7.6)

For instance, x2
1x2∂

2
2 ≻ x1x2∂

2
2 ≻ x2∂1∂

2
2 . In Singular, this order is encoded as dp. It is one

of the orders that are most common—and typically among the fastest—in applications. ⋄

These definitions naturally extend to gr(u,v)(D)-ideals.

We now have two different notions of Gröbner bases of D-ideals: one with respect to
weight vectors, and another one with respect to multiplicative monomial orders. They are
related as follows. Let (u, v) ∈ W and let ≺ be any term order. The order ≺(u,v) is the
multiplicative monomial defined as follows:

xα∂β ≺(u,v) x
a∂b ⇔ αu+ βv < au+ bv or (αu+ βv = au+ bv and xα∂β ≺ xa∂b), (7.7)

i.e., we use ≺ as a tiebreaker. This defines a term order if and only if (u, v) is non-negative.

Example 7.8. For (u, v) the all-one vector and ≺ the reverse lexicographic order, the re-
sulting order ≺(u,v) is degrevlex. ⋄

Theorem 7.9 ([37, Theorem 1.1.6]). Let I be a D-ideal, (u, v) ∈ W any weight vector,
≺ any term order, and G a Gröbner basis of I with respect to ≺(u,v). Then
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(1) the set G is a Gröbner basis of I with respect to (u, v) and

(2) the set in(u,v)(G) is a Gröbner basis of in(u,v)(I) with respect to ≺.

Theorem 7.10 ([37, Theorem 1.1.7]). Let ≺ be a term order on D and G a Gröbner basis
for its D-ideal I = D ·G with respect to ≺. Any Q ∈ I admits a standard representation in
terms of G: there exist C1, . . . , Cm ∈ D such that

Q =
m∑
i=1

CiPi, where Pi ∈ G and in≺(CiPi) ⪯ in≺(Q) for all i. (7.8)

It can be computed the via the normal form algorithm (also called division algorithm),
presented on p. 7 of [37]. For arbitrary Q ∈ D, the algorithm outputs the normal form of Q
with respect to G: the unique remainder after reduction modulo G.

7.2 Pfaffian systems

The computations in this section are carried out in the rational Weyl algebra Rn. We will
denote C(x) = C(x1, . . . , xn) for brevity, and likewise R = Rn = C(x)⟨∂⟩ the n-th rational
Weyl algebra. We first need to relate Gröbner bases in D and R.

Definition 7.11. A term order ≺ on D is an elimination order if ∂β ≺ ∂γ implies xα∂β ≺ ∂γ

for all α ∈ Nn.

Let ≺ be a term order on D. We will denote by ≺′ its restriction to monomials in the ∂i’s;
this is a term order on Nn. For any choice of term order ≺ on D, ≺(0,1) is a term order on
the rational Weyl algebra, which refines the order given by the total degree in the ∂i’s. If G
is a Gröbner basis of a D-ideal I with respect to an elimination order ≺ on D, then G is
also a Gröbner basis of the the R-ideal RI with respect to the order ≺′. A generating set of
the initial ideal of RI is obtained by replacing each of the variables x1, . . . , xn by 1.

Note bene. The holonomic rank (3.8) of a D-ideal I hence is the number of standard
monomials of in(0,1) considered as a C(x)[ξ]-ideal. I.e., it is the number of monomials ξβ =

ξβ1

1 · · · ξβn
n such that ξβ is not contained in in(0,1)(I).

Unless otherwise stated, we use the degree reverse lexicographical order. For n = 2, this gives

1 ≺ ∂2 ≺ ∂1 ≺ ∂2
2 ≺ ∂1∂2 ≺ ∂2

1 ≺ · · · . (7.9)

Let f(x1, . . . , xn) be a real-valued holonomic function and I a D-ideal with finite holo-
nomic rank such that I • f = 0. Thus, R/RI is finite-dimensional over C(x1, . . . , xn). In our
application in Section 8.2, f will be the likelihood function of a statistical model.

Let rank(I) = m ∈ N>0 be the holonomic rank of I. We write S = {s1, . . . , sm} for the
set of standard monomials for a Gröbner basis of RI in R. We can assume that s1 = 1.
The m entries of the vector

F = (s1 • f, s2 • f, . . . , sm • f)⊤ (7.10)
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are holonomic functions. Note that the first entry of F is the given function f . In sym-
bols, (F )1 = f . Since the D-ideal I has holonomic rank m, there exist unique matrices
P1, . . . , Pn ∈ C(x1, . . . , xn)

m×m such that

∂i • F = Pi · F for i = 1, . . . , n. (7.11)

The system of linear PDEs in (7.11) is called Pfaffian system of f .

Remark 7.12. For a discussion on how Pfaffian systems and connection matrices of inte-
grable connections are related, see Appendix B of [20]. A Pfaffian system determines the
D-module structure, but not the D-ideal itself: being isomorphic D/I ∼= D/J as D-modules
does not imply equality of the D-ideals I and J . ⋄

Pfaffian systems are a multivariate analog of the companion matrix of ODEs.

Example 7.13 (n = 1). Let f be a holonomic function annihilated by the D1-ideal

I =
〈
x∂3 − (x+ 1)∂ + 1

〉
. (7.12)

The generator by itself is a Gröbner basis for RI. The set of standard monomials equals
S = {1, ∂, ∂2}, and this is a C(x)-basis of R/RI. From I we see that

∂3 • f =
x+ 1

x
∂ • f − 1

x
· f . (7.13)

Let F = (f, ∂ • f, ∂2 • f)T . This yields the following Pfaffian system for f :

∂ • F = P · F where P =

 0 1 0
0 0 1
− 1

x
x+1
x

0

 (7.14)

is the companion matrix. For any non-zero real number u we have f ′(u)
f ′′(u)
f ′′′(u)

 =

 0 1 0
0 0 1
− 1

u
u+1
u

0

 ·

 f(u)
f ′(u)
f ′′(u)

 . (7.15)

This matrix-vector formula will useful for the design of numerical algorithms in Section 8. ⋄
Note that Pfaffian systems depend on the specific R-ideal RI and on the chosen term

order. The matrices Pi can be computed as follows. We apply the division algorithm modulo
our Gröbner basis to the operators ∂isj, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. The resulting
normal form equals

a
(i)
j1 (x)s1 + a

(i)
j2 (x)s2 + · · · + a

(i)
jm(x)sm ,

where the coefficients a
(i)
jk are rational functions in x1, . . . , xn. This means that the operator

∂isj −
m∑
k=1

a
(i)
jk (x)sk (7.16)

is in the R-ideal RI. From this one sees that the coefficient a
(i)
jk (x) is the (j, k)-th entry of

the m×m matrix Pi. Algorithms for an efficient computation of Pfaffian systems based on
Macaulay matrices were designed in the recent article [9].
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Remark 7.14. A change of base results in a gauge transform of the connection matrix.
Regular singular systems can be brought into Fuchsian form via a suitable gauge transform,
i.e., the resulting matrices having poles of order at most one. ⋄

We have now reached the following important conclusion. Suppose x is replaced by a
point u in Qn. Here u might be a highly accurate floating point representation of a point
in Rn. The numerical evaluation of the gradient of f at u can be accomplished by multiplying
the vector F (u) ∈ Qm by the matrices Pi(u) with explicit rational entries. A tacit assumption
made here is that u lies in the complement of the singular locus of the Pfaffian system (7.11).

8 Evaluating holonomic functions

This lecture explains the holonomic gradient method (HGM) of [31]. It is a numerical scheme
for the evaluation of holonomic functions, which was originally developed for the statistical
inference of data. Our presentation here closely follows [39]. The applicability of the HGM
arises from the fact that some probability distributions that are used in practice are given
by holonomic functions. One example is the cumulative distribution function of the largest
eigenvalue of a Wishart matrix, cf. [19]. Another relevant holonomic function arises for
sampling matrices in SO(3), which will be the topic of Section 8.2 and closely follows [1].

8.1 Holonomic gradient method

Consider the problem of maximum likelihood estimation in statistics. Our aim is to explain
the benefit gained fromD-module theory. A key idea is to compute and represent the gradient
of such a function from its canonical holonomic representation. The statistical aim of MLE is
to find parameters for which an observed outcome is most probable [44, Chapter 7]. This can
be formulated as an optimization problem, namely to maximize the likelihood function. For
discrete models with N outcomes, this function has the form f s1

1 · · · f sN
N , where fi encodes the

ith state of the model. In what follows, we consider the likelihood function for continuous
models. Our goal is to find a local maximum of a holonomic function using a variant of
gradient descent. Given a holonomic function f , represented by a holonomic D-ideal, we
are interested in finding local minima of f with the help of the knowledge of I. We first
describe how to evaluate the holonomic function f at a point x̃ by a first order approximation.
Assume we are able to numerically evaluate f at some particular point x(0), depending on
the precise situation. Choose a path x(0) → x(1) → · · · → x(K) = x̃, with x(k+1) sufficiently
close to x(k) for all k = 0, . . . , K−1, and such that the path does not cross the singular locus
of the Pfaffian system of f . The following algorithm is referred to as the

Holonomic Gradient Method (HGM).

Step 1. Compute a Gröbner basis of RI in the rational Weyl algebra R.

Step 2. Compute the set of standard monomials S and the Pfaffian system (7.11).

Step 3. Evaluate F at one point x(0) and denote the result by F̄ . Set k = 0.
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Step 4. Approximate the value of the vector F at x(k+1) by its first-order Taylor polynomial,
and denote the result again by F̄ :

F
(
x(k+1)

)
≈ F

(
x(k)

)
+

n∑
i=1

(
x
(k+1)
i − x

(k)
i

)
· (∂i • F )

(
x(k)

)
= F

(
x(k)

)
+

n∑
i=1

(
x
(k+1)
i − x

(k)
i

)
· Pi

(
x(k)

)
· F̄ .

Step 5. Increase the value of k by 1. If k < K, return to step 4. Otherwise stop.

Steps 1 to 3 need to be carried out only once for (f, I). The output of this algorithm is a
vector F̄ that approximates F (x̃). The first coordinate of F (x̃) is the desired scalar f(x̃).
Hence the first coordinate of F̄ is our approximation.

Remark 8.1. To turn the HGM into a practical algorithm, it is essential to incorporate
some knowledge from numerical analysis. For instance, there is a lot of freedom in choosing
the numerical approximation method in step 4. Nakayama et al. [19] use the Runge–Kutta
method of fourth order. Another possibility is to use a second order Taylor approximation,
where one computes the Hessian of f also by means of the Pfaffian system of f . ⋄

We are now endowed with all necessary tools for finding a local minimum of the holonomic
function f . As before, f is encoded by an annihilating D-ideal I with finite holonomic rank.
This encoding is the input to the next algorithm.

Holonomic Gradient Descent (HGD).

Step 1. Compute a Gröbner basis of RI in the rational Weyl algebra R.

Step 2. Compute the set of standard monomials S and the Pfaffian system (7.11).

Step 3. Numerically evaluate F (x(0)) at some starting point x(0) and put k = 0. Denote this
value by F̄ . The evaluation method is chosen to be adapted to the problem.

Step 4. For i = 1, . . . , n, evaluate the first coordinate of Pi(x
(k)) · F̄ . Let Ḡ be the vector of

these n numbers. This approximates the gradient ∇f at x(k) since

∂i • f = (∂i • F )1 = (Pi · F )1 .

Step 5. If a termination condition of the iteration is satisfied, stop. Otherwise go to step 6.

Step 6. Put x(k+1) = x(k) − hkḠ, where hk is an appropriately chosen step length.

Step 7. Numerically evaluate F at x(k+1) by step 4 of the HGM and set this value to F̄ .
Increase the value of the index k by one and return to step 4 above.

The algorithm returns a point x(k) along with the value of F at that point. The first entry
of this output is a numerical approximation of a local minimum of the holonomic function f .
Again, one should be aware that, in general, this algorithm works only within connected
components contained in the complement of the singular locus of the Pfaffian system of f .
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Remark 8.2. In order to develop a practical implementation, and to assess the quality of
the method, one needs some expertise from numerical analysis. The choices one makes can
make a huge difference. For instance, the choice of the step size hk is a well-studied subject
in numerical optimization, and there are various standard recipes for carrying out gradient
descent. In current applications to data science, stochastic versions of gradient descent play
a major role, and it would be very nice to connect D-modules to these developments. ⋄

8.2 Statistical inference

The HGM was applied to determining the maximum likelihood estimate (MLE) for the
Fisher model for data in SO(3) in [42]. The Haar measure on SO(3) is the unique proba-
bility measure µ that is invariant under the group action. The Fisher model is a family of
probability distributions on SO(3) that is parameterized by 3 × 3 matrices Θ. For a fixed
parameter matrix Θ, the density of the Fisher distribution equals

fΘ(Y ) =
1

c(Θ)
· exp

(
tr
(
Θ⊤ · Y

))
for all Y ∈ SO(3) . (8.1)

This is the density with respect to the Haar measure µ. The denominator is the normalizing
constant. It is chosen such that

∫
SO(3)

fΘ(Y )µ(dY ) = 1. This requirement is equivalent to

c(Θ) =

∫
SO(3)

exp
(
tr
(
Θ⊤ · Y

))
µ(dY ). (8.2)

Since integration is against the Haar measure, the function (8.2) is invariant under multi-
plying Θ on the left or right by a rotation matrix:

c(Q ·Θ ·R) = c(Θ) for all Q,R ∈ SO(3) . (8.3)

In order to evaluate (8.2), we can therefore restrict to the case of diagonal matrices. Namely,
given any 3× 3 matrix Θ, we first compute its sign-preserving singular value decomposition

Θ = Q · diag(x1, x2, x3) ·R . (8.4)

Sign-preserving means that Q, R ∈ SO(3) and |x1| ≥ x2 ≥ x3 ≥ 0. For invertible Θ, this
implies that x1 > 0 whenever det(Θ) > 0 and x1 < 0 otherwise. The normalizing constant
is the following function of the three singular values:

c̃ (x1, x2, x3) := c (diag(x1, x2, x3)) =

∫
SO(3)

exp (x1y11 + x2y22 + x3y33) µ(dY ) . (8.5)

Now suppose we are given a finite sample {Y1, Y2, . . . , YN} from the rotation group SO(3).
Our aim is to find the parameter matrix Θ whose Fisher distribution fΘ probabilistically
best explains the data. We work in the classical framework of likelihood inference, i.e., we
seek to compute the MLE for the given data {Y1, Y2, . . . , YN}. By definition, the MLE is the
3× 3 parameter matrix Θ̂ which maximizes the log-likelihood function. Thus, we must solve
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an optimization problem. From our data, we compute the sample mean Ȳ = 1
N

∑N
k=1 Yk; it

is generally not a rotation matrix anymore. We next compute the sign-preserving singular
value decomposition of the sample mean, i.e., we determine Q,R ∈ SO(3) such that

Ȳ = Q · diag (g1, g2, g2) ·R. (8.6)

The sample {Y1, . . . , YN} enters the log-likelihood function only via g1, g2, g3.

Lemma 8.3 ([42, Lemma 2]). The log-likelihood function for the given sample from SO(3) is

ℓ : R3 −→ R, (x1, x2, x3) 7→ x1g1 + x2g2 + x3g3 − log(c̃(x1, x2, x3)). (8.7)

If (x̂1, x̂2, x̂3) is the maximizer of the function ℓ, then the matrix

Θ̂ = Q · diag(x̂1, x̂2, x̂3) ·R (8.8)

is the MLE of the Fisher model (8.1) of the sample {Y1, . . . , YN} from SO(3).

Since (8.7) is a strictly concave function, a local maximum is already a global one and
is attained at a unique point in R3. The approach of [42] has been generalized to SO(n)
in [25], and to compact Lie groups and applied to data from the sciences such as medical
imaging in [1]. To evaluate the gradient of ℓ, the main task is to evaluate c̃. The latter is a
holonomic function. It is annihilated by the operators∏

j ̸=i

(x2
i − x2

j) ·
(
∂2
i − 1 +

∑
k ̸=i

1

x2
i − x2

k

(xi∂i − xj∂j)
)
, i = 1, 2, 3,

(x2
i − x2

j)∂i∂k − (xi∂i − xk∂j)− (x2
i − x2

j)∂k, 1 ≤ i < j ≤ 3 and {i, j, k} = {1, 2, 3} .
(8.9)

The D3-ideal generated by these operators is holonomic and has holonomic rank 4.

Remark 8.4. Also for discrete statistical models, the problem of maximum likelihood esti-
mation can be addressed by algebro-geometric methods. Likelihood geometry [22] encodes
statistical models as very affine varieties, i.e., as closed subvarieties of an algebraic torus. The
curve obtained from intersecting the purple homogeneous surface M = V (p0p2− (p0+p1)p1)
with the orange probability 2-simplex

∆2 = {(p0, p1, p2) | pi ∈ (0, 1), p0 + p1 + p2 = 1} (8.10)

in Figure 3 represents an independence model arising from a coin flip. For observed data
(u0, u1, u2) ∈ N3 of sample size |u| = u0 + u1 + u2, denote u+ = u0 + u1 + u2. The MLE
problem translates to minimizing the distance from the curve to the empirical distribution
(u0/u+, u1/u+, u2/u+) ∈ ∆2 with respect to the Kullback–Leibler divergence; see Remark 2 of
these lecture notes. For models with a unique MLE, there is an intriguing relation between
the Bernstein–Sato ideal of a parameterization of the model, boundary components of a
tropical compactification of the model, and the MLE, which is elaborated in [40]. ⋄
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Figure 9: [1, Figure 1] Electromagnetical forces generated by the hearts of 28 young boys.
The MLE of this dataset was computed in [1]. Combining the BFGS algorithm with the
HGM outperformed the classical BFGS both in runtime and precision.

9 Computing solutions of D-ideals

This section treats the computation of truncated series solutions of regular holonomic
D-ideals. These series are called “canonical series solutions” and their truncations are com-
puted via an algorithm of Saito, Sturmfels, and Takayama [37, Section 2.6], to which we
refer as “SST algorithm”. It is a generalization of the Frobenius method—a method for the
computation of power series solutions of second-order ODEs—to several variables.

9.1 Frobenius ideals

Recall from Definition 2.18 that a Dn-ideal is a Frobenius ideal if it can be generated by
elements of the polynomial ring C[θ1, . . . , θn]. In particular, every torus-fixed D-ideal I gives

rise to a Frobenius ideal DĨ, which has the same classical solution space. A Frobenius ideal
F = DnJ , J ⊂ C[θ1, . . . , θn], is holonomic if and only if J is Artinian, and the solution space
of F can be described explicitly in this case, as we well learn now.

Let J be an Artinian ideal in the polynomial ring C[θ] = C[θ1, . . . , θn]. Its variety V (J)
is a finite subset of Cn. The primary decomposition of J equals

J =
⋂

A∈V (J)

QA(θ − A) , (9.1)

where QA is an ideal that is primary to the maximal ideal ⟨θ1, . . . , θn⟩, and QA(θ − A) is the
ideal obtained from QA by replacing θi with θi − Ai for i = 1, . . . , n. The ideal QA is the
primary component of J at A.

Definition 9.1. The orthogonal complement of the Artinian ideal QA is the finite-
dimensional C-vector space

Q⊥
A = {p ∈ C[x1, . . . , xn] | f(∂1, . . . , ∂n) • p(x1, . . . , xn) = 0 for all f = f(θ1, . . . , θn) ∈ QA} .
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In commutative algebra, the vector space Q⊥
A is known as the (Macaulay) inverse system

to the ideal J at the given point A.

Proposition 9.2 ([37, Theorem 2.3.11]). Let F = DnJ, where J ⊂ C[θ], be a holonomic
Frobenius ideal. The solution space of F is spanned by the functions xA · g(log(x)), where A
runs over the points of the variety V (J), and g runs over the orthogonal complement of QA.

Example 9.3. The ideal J = ⟨θ1 + θ2 + θ3, θ1θ2 + θ1θ3 + θ2θ3, θ1θ2θ3⟩ is generated by non-
constant symmetric polynomials. It is primary to ⟨θ1, θ2, θ3⟩. We have V (J) = {(0, 0, 0)},
with rank(DJ) = 6: the monomials {1, ∂1, ∂2, ∂2

1 , ∂1∂2, ∂
2
1∂2} are a C(x1, x2, x3)-basis

of R3/R3I. The orthogonal complement of Q0 is 6-dimensional. It is spanned by all polyno-
mials that are successive partial derivatives of (x1 − x2)(x1 − x3)(x2 − x3). This implies

Sol(DJ) = C[θ] • (log (x1/x2) · log (x1/x3) · log (x2/x3)) ∼= C6 (9.2)

for the solution space of DJ . ⋄

Theorem 9.4 ([37, Theorem 2.5.1]). Let I be any holonomic D-ideal and w ∈ Rn generic
for I. Then indw(I) is a holonomic Frobenius ideal Its rank equals the rank of in(−w,w)(I).
This is bounded above by rank(I), with equality when the D-ideal I is regular holonomic.

The indicial ideal indw(I) is computed from I by means of Gröbner bases in D. This
computation identifies the leading terms in a basis of series solutions for I. The construction
of the higher terms in these series solutions is the topic of the next section.

9.2 Regular holonomic D-ideals

By N , we denote the ring of functions of the Nilsson class, i.e., those functions which can
be represented by an element of

N := CJxu1

, . . . , xun

K[xβ1

, . . . , xβn

, log(x1), . . . , log(xn)] (9.3)

for suitable vectors u1, . . . , un, β1, . . . , βn ∈ Cn (see [37, (2.31)]). The coefficients lie in the
ring CJxu1 , . . . , xunK of formal power series in the xui .

Definition 9.5. The w-weight of a monomial xA log(x)B is the real part Re(w ·A) of w ·A.
The initial series of f =

∑
A,B cABx

A log(x)B ∈ N , denoted inw(f), is defined to be the finite
subsum of all terms of minimal w-weight.

Any weight vector w ∈ Rn induces a partial order on functions of the Nilsson class via

xA log(x)B ≤ xC log(x)D ⇔ Re(w · A) ≤ Re(w · C) . (9.4)

Since the w-weight does not give a monomial order, one needs a monomial order ≺ as a
tie breaker and denotes the resulting monomial order by ≺w. We will take ≺ to be the
lexicographical order on N obtained as restriction of the lexicographic order on Cn ⊕ Nn.
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Definition 9.6. The set of starting monomials of I with respect to ≺w is

Start≺w(I) := {in≺w(f) | f ∈ N is a non-zero solution of I} , (9.5)

where in≺w(f) = xA log(x)B for some A ∈ Cn and B ∈ Nn.

In the definition, xA denotes xA1
1 · · ·xAn

n and log(x)B = log(x1)
B1 · · · log(xn)

Bn . Moreover,

Start≺w(I) = Start≺w

(
in(−w,w)(I)

)
= Start≺w (indw(I)) . (9.6)

Proposition 9.7 ([37, Corollary 2.5.11]). If xA log(x)B ∈ Start≺w(I), then A is an exponent
of I with respect to w. For each exponent A, the number of starting monomials of the form
xA log(x)B is the multiplicity of A as a root of the indicial ideal indw(I).

Theorem 9.8 ([37, Theorem 2.5.12]). For each starting monomial xA log(x)B in
Start≺w(I) = Start≺w(indw(I)), there exists a unique f ∈ N with the following properties:

(1) f is annihilated by I, i.e., f ∈ Sol(I),

(2) inw(f) = xA log(x)B, and

(3) the monomial xA log(x)B is the only starting monomial that appears in f with non-zero
coefficient.

Solutions to I as in the theorem above are called canonical (series) solutions of I with
respect to ≺w. Which exponents can occur in the solution functions f in Theorem 9.8 is
made precise in the next proposition.

Proposition 9.9. If I is regular holonomic and w a generic weight for I, there exist rank(I)
many canonical series solutions of I which lie in the Nilsson ring Nw(I) of I w.r.t. to w,

Nw(I) := CJCw(I)
∗
ZK[x

e1 , . . . , xer , log(x1), . . . , log(xn)] . (9.7)

Here, {e1, . . . , er} denotes the set of roots of the indicial ideal of I, and Cw(I)
∗
Z = Cw(I)

∗∩Zn,
where Cw(I) is the Gröbner cone of I containing w,

Cw(I) =
{
w′ ∈ Rn| in(−w,w)(I) = in(−w′,w′)(I)

}
, (9.8)

and

Cw(I)
∗ = {u ∈ Rn | u · v ≥ 0 for all v ∈ Cw} (9.9)

is its dual cone (called “polar dual” in [37]). The elements of CJCw(I)
∗
ZK are power series

in x whose exponent vectors lie in Cw(I)
∗
Z. More precisely, the canonical solutions to I

with respect to ≺w have the form xA · g, where A is an exponent of I and g is an element of
CJCw(I)

∗
ZK[log(x1), . . . , log(xn)], such that the degree of each log(xi) in g is at most rank(I)−1

(see [37, Theorem 2.5.14]). We also briefly comment on the convergence of these series: there
exists a point p ∈ Cw(I) such that the canonical series solutions converge for x ∈ Cn satisfying
(− log |x1|, . . . ,− log |xn|) ∈ p+ Cw(I), see [37, Theorem 2.5.16].
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Theorem 9.10 ([37, Theorem 2.6.1]). Let I be a regular holonomic ideal in
Q[x1, . . . , xn]⟨∂1, . . . , ∂n⟩ and let w ∈ Rn be a generic weight vector for I. Let I be given
by a Gröbner basis G with respect to w. There exists an algorithm which computes all terms
up to specified w-weight in the canonical series solutions to I with respect to ≺w.

We now turn to the proof, which also contains the procedure of lifting solutions. This
procedure is commonly referred to as “SST algorithm”.

Proof. Let w ∈ Rn be generic for I. Compute the roots of indw(I) and extend the field
of coefficients by them. Denote the resulting, computable field extension of Q by K. To
compute the canonical solution of I whose starting monomial is xA log(x)B, one proceeds as
follows. For p ∈ Zn, denote by Lp the K-vector space

Lp := xA ·
∑

0≤bi<rank(I)

K · xp log(x)b . (9.10)

The K-vector space Lp is finite-dimensional. Every f ∈ K[θ] induces a K-linear map
f : Lp → Lp. The monomials of Lp are a K-basis of it. They are ordered by the term
order ≺w on the Nilsson ring, starting with the smallest. The matrix of f in this basis is
an upper triangular square matrix. Let L′

p denote the set of monomials in Lp that are not
contained in Start≺w(I). Now let {f1, . . . , fd} be any generating set of indw(I) and restrict
fi : Lp → Lp to L

′
p; this corresponds to deleting some of the columns in the associated matrix.

Denote the resulting matrix by Fi. Then the map

F : L′
p −→ Ld

p, v 7→ (f1 • v, . . . , fd • v)⊺ (9.11)

is injective and is represented by the matrix obtained as vertical concatenation of F1, . . . , Fd.
Now let G = {g1, ..., gd} be a Gröbner basis of I with respect to w; its Gröbner cone

in Rn is denoted by Cw. For each g ∈ G, choose a Laurent monomial xα such that

xαg = f − h , (9.12)

where f ∈ K[θ1, . . . , θn], h ∈ K[x±1
1 , . . . , x±1

n ]⟨∂1, . . . , ∂n⟩ with ord(−w,w)(h) < 0. Here,
ord(−w,w)(h) denotes the largest w-weight of a monomial appearing in h. Then the set
of operators f1, ..., fd obtained this way generate indw(I) and, as maps as in (9.11), they are
injective. The Laurent monomial xα for a Gröbner basis element g is obtained by taking a
highest-weight term xa∂bm in g, where m is a monomial in the θi’s and for all k, at least
one of {ak, bk} is zero. Intuitively, this corresponds to pulling out as many θ’s as possible
into m. Then xα = xb−a. The hi may have terms of different weights; in this case, we get a
recurrence that involves Lp for more than two different p’s. The coefficients of the canonical
series solution are now computed by induction on the w-weight k. We start from a canonical
series solution xA log(x)B + · · · and assume the coefficients cpb ∈ K are already known for
0 ≤ p · w ≤ k, p ∈ C∗

Z. Let Fk(x) be this partial solution up to w-weight k, i.e.,

Fk(x) = xA ·
∑

0≤p·w≤k, p∈C∗
Z ,

0≤bj<rank(I)

cpb x
p log(x)b , (9.13)
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and let Mk be the space of terms with w-weight greater than k, i.e. Mk =
∑

p·w>k,p∈C∗
Z
Lp.

Then, by definition, we have that

gi • Fk(x) ≡ 0 mod Mk . (9.14)

Assuming we know Fk(x) for some k, we are going to construct a recursion which allows us
to determine the additional terms which are needed to lift Fk(x) to Fk+1(x). The starting
point of that recursion will be the starting monomials. We hence look for an element Ek+1

of
∑

p·w=k+1, p∈C∗
Z
L′
p such that

Ek+1(x) ≡ Fk+1(x)− Fk(x) mod Mk+1 . (9.15)

To achieve this, observe that ord(−w,w)(hi) < 0 implies that hi • xℓ has higher w-weight
than xℓ. We can show this on monomials as follows. Suppose that hi = xq for some q ∈ Nn

with q · (−w) < 0. Then q · w > 0, so hi • xℓ = xℓ+q has higher w-weight than xℓ. Similarly,
suppose that hi = ∂r where r · w < 0. Then (−r) · w > 0. Thus hi • xℓ = Cxℓ−r for some
constant C, and xℓ−r has higher w-weight than xℓ. Together with (9.12) and (9.14), this
implies that fi • Fk+1 = hi • Fk mod Mk+1, which gives the desired recursion relation for
Ek+1(x) in terms of Fk(x), namely

fi • Ek+1(x) ≡ (hi − fi) • Fk(x) mod Mk+1 . (9.16)

By the injectivity of the map F from (9.11) and the existence of a canonical series solution,
there exists a unique solution Ek+1(x) to (9.16), and this lifts Fk(x) to Fk+1(x).

This algorithm has been applied to D-ideals behind Feynman integrals in [20] and
matched with methods that are in more common use by physicists. In the meantime, an im-
plementation of the algorithm is contained in the Macaulay2 package HolonomicSystems [41]
of Sayrafi, Berkesch, Leykin, and Tsai.

Example 9.11. Consider the hypergeometric differential operator

P = θ(θ − 3)− x(θ + a)(θ + b) . (9.17)

The D-ideal I = DP is holonomic of rank ord(0,1)(P ) = 2. The Gröbner fan of I has two
maximal cones, namely ±R≥0. For the weight w = 1, in(−w,w)(I) = ⟨ θ(θ − 3) ⟩ = indw(I).
The exponents of I are V (indw(I)) = {0, 3}. Hence we will be having starting monomials
involving x0 = 1 and x3, and logarithmic terms. Choose x3 as starting monomial, so that
Lp = C · {xp+3, xp+3 log(x)}. We are seeking for a series solution of the form

x3 ·
∑
p

cp,1x
p + cp,2x

p log(x) . (9.18)

Write P = f − h, where f = θ(θ − 3) and h = x(θ + a)(θ + b). The action of θ on Lp is

θ • xp+3 = (p+ 3)xp+3 and θ • (xp+3 log(x)) = xp+3 + (p+ 3)xp+3 log(x) . (9.19)
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Thus, the matrix of the operator θ in the basis {xp+3, xp+3 log(x)} is[
p+ 3 1
0 p+ 3

]
. (9.20)

Let cp,1 and cp,2 be the coefficients of xp+3 and xp+3 log(x) in the power series expansion (9.18).
Then we can write our operators as matrices, and our recurrence as[

p 1
0 p

] [
p+ 3 1
0 p+ 3

] [
cp,1
cp,2

]
=

[
p− a+ 2 1

0 p− a+ 2

] [
p− b+ 2 1

0 p− b+ 2

] [
cp−1,1

cp−1,2

]
with initial values c0,1 = 1 and c0,2 = 0. Solving the recurrence yields

cp,1 = 0 and cp,2 =
(a+ 3)p(b+ 3)p

(1)p(4)p
, (9.21)

where

(a)p = (a+ 1) · · · (a+ p− 1) (9.22)

is the Pochhammer symbol. If we choose the starting monomial x0 = 1 instead, the matrix
of f is singular for p = 3. To find the series expansion in this case, see [37, pp. 98–99]. ⋄

Exercise 9.12. Let I be theD1-ideal from Example 2.20. It has holonomic rank 2. Compute
the canonical series solutions of I for w = 1 up to w-weight 4. ⋄

10 Relations among Mellin integrals

In high energy physics, scattering processes of particles are pictorially represented by Feyn-
man diagrams. Via Feynman rules, one associates to each of these diagrams an integral:
its Feynman integral, a comprehensive treatment of which can be found in [49]. It is im-
portant to understand relations among these integrals in different dimensions of Minkowski
spacetime. The theory of D-modules turns out to be helpful for this undertaking.

10.1 Bernstein–Sato ideals

To the Weyl algebra, we adjoin a new formal variable s which commutes with all xi’s
and ∂i’s. The resulting ring is Dn[s]. Fix a polynomial f ∈ C[x1, . . . , xn] and consider
the Dn[s]-module C[x1, . . . , xn, s, f

s, f−1]. The action of Dn[s] is given by the usual rules of
arithmetic. In particular,

∂i • f s = s
∂f

∂xi

f−1f s = s
∂f

∂xi

f s−1 . (10.1)

Definition 10.1. Let f ∈ C[x1, . . . , xn]. The Bernstein–Sato polynomial bf ∈ C[s] of f is
the unique monic polynomial of smallest degree for which there exists Pf ∈ Dn[s] such that

Pf (s) • f s+1 = bf (s) · f s. (10.2)
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If V (f) is smooth, then bf = s + 1. While the Bernstein polynomial is unique, the
Bernstein–Sato operator Pf is unique only modulo AnnDn[s](f

s+1). It is known that bf is
non-trivial and that its roots are negative rational numbers [23].

Example 10.2. Let f = x2
1 + · · ·+ x2

n ∈ C[x1, . . . , xn]. Since

n∑
i=1

∂2
i • f s+1 = 4(s+ 1)

(
s+

n

2

)
f s , (10.3)

the Bernstein–Sato polynomial of f is bf = (s + 1)(s + n
2
) ∈ C[s], and Pf = 1

4
∆, where

∆ = ∂2
1 + · · ·+ ∂2

n denotes the Laplace operator, is a Bernstein–Sato operator of f . ⋄

Exercise 10.3. Determine the Bernstein–Sato polynomial of your favorite polynomial. ⋄

Bernstein–Sato polynomials were originally studied to construct meromorphic continua-
tions of the distribution-valued function s 7→ f s, which is a priori defined only for complex
numbers s ∈ C with positive real part. Nowadays, it is an important object of study in
singularity theory, among others in work on the monodromy conjecture such as [7, 8].

Definition 10.4. The s-parametric annihilator of f s is the Dn[s]-ideal

AnnDn[s] (f
s) := {P ∈ Dn[s] | P • f s = 0} . (10.4)

The algebraic Mellin transform from (5.13) induces an isomorphism

M
{
·} : AnnDn[s] (f

s)
∼=−→ AnnSn[s] (M {f s}) . (10.5)

Example 10.5. For P as in Equation (10.2), the operator Pff − bf is in AnnDn[s](f
s). ⋄

Example 10.6. Let f = (x − 1)(x − 2) ∈ C[x]. In this case, the s-parametric annihilator
of f s is the Dn[s]-ideal generated by the operator P = f∂ − s∂ • f. This can be computed
running the following code in Singular [12]:

LIB "dmod.lib";

ring r = 0,x,dp;

poly f = (x-1)*(x-2);

def A = operatorBM(f); setring A; LD;

The s-parametric annihilator of f s is encoded as LD in the ring A. ⋄

The Bernstein–Sato polynomial is computed as the monic generator of the C[s]-ideal〈
bf
〉
=

(
AnnD[s] (f

s) +
〈
f
〉)

∩ C[s] . (10.6)

Algorithm 5.3.15 in [37] presents an algorithm of Oaku to compute this ideal.

Exercise 10.7. Let c ∈ C be fixed. Are
(
AnnDn[s](f

s)
)
|s=c and AnnDn(f

c) always equal? ⋄
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For a tuple F = (f1, . . . , fℓ) of ℓ > 1 polynomials f1, . . . , fℓ ∈ C[x1, . . . , xn], one needs to
consider the Bernstein–Sato ideal instead.

Definition 10.8. The Bernstein–Sato ideal of F = (f1, . . . , fℓ) is the ideal BF ⊂ C[s1, . . . , sℓ]
consisting of all polynomials b ∈ C[s1, . . . , sℓ] for which there exists P ∈ Dn[s1, . . . , sℓ] s.t.

P •
(
f s1+1
1 · · · f sℓ+1

ℓ

)
= b · f s1

1 · · · f sℓ
ℓ . (10.7)

Sabbah [35] proved that BF is non-trivial and moreover that the irreducible components
of V (BF ) of codimension one are affine-linear hyperplanes with non-negative rational coef-
ficients. This is analogous to the fact that the zeroes of the Bernstein–Sato polynomial are
negative rational numbers.

Example 10.9. Consider the following statistical experiment. Flip a biased coin. If it shows
head, flip it one more time. The three outcomes of this model are described by the three
univariate polynomials f0 = x2, f1 = x(1 − x), and f2 = 1 − x. The probability tree of the
model is depicted in Figure 10. For data s = (s0, s1, s2) ∈ N3, the likelihood function of this

x

1− x

x

1− x

p0

p1
p2

Figure 10: Staged tree [13] modeling the experiment from Example 10.9

model is f s = f s0
0 f s1

1 f s2
2 . Its Bernstein–Sato ideal is principal and generated by

3∏
k=1

(2s0 + s1 + k) ·
2∏

l=1

(s1 + s2 + l) ∈ C[s0, s1, s2] . (10.8)

This can be obtained by running the following code in Singular.

LIB "dmod.lib";

ring r = 0,x,dp; ideal F = x^2, x*(1-x), 1-x;

def A = annfsBMI(F); setring A; BS;

It is a special incident in this example that the Bernstein–Sato ideal is principal. ⋄

Exercise 10.10. Compute the maximum likelihood estimate of the model in Example 10.9.
Compare it with the Bernstein–Sato ideal in (10.8). ⋄

10.2 Feynman integrals

In high energy physics, scattering processes of particles are graphically depicted by Feyn-
man diagrams. To each such diagram, one associates its graph polynomial. We here recall
definitions from [6, Section 4]. Let G = (V,E) be a graph with vertices V = {v1, . . . , vr}
and edges E = {e1, . . . , en}. The first Betti number of graph with k connected components
is l = n − r + k. In physics, it is sometimes called the “number of loops”—with relations
among loops being taken into account.
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Definition 10.11. Let k ∈ N. A spanning k-forest for G is a subgraph F of G that contains
all vertices of G, has no loops, and k connected components. The set of spanning k-forests
is denoted Tk. Spanning 1-forests are called spanning trees.

Feynman diagrams are graphs, with external legs attached, which depict particles that
are flowing in and out. Figure 11 shows a Feynman diagram, which is commonly referred to
as “one-loop graph” or “bubble graph”.

p p

ℓ

ℓ+ p

Figure 11: One-loop graph with one incoming and one outcoming particle and loop momen-
tum ℓ. Each node obeys momentum conservation.

The momentum vectors pi of these particles are elements of d-dimensional Minkowski space-
time, i.e., Rd = {(t, x1, . . . , xd−1)} endowed with the Minkowski inner product of signature
(−,+, · · · ,+) or (+,−, · · · ,−), depending on the convention used. We will denote Feynman
diagrams by G as well. Let Ti denote the connected components of a spanning forest, and
denote by PTi

the set of external momenta attached to Ti. To each internal edge ei, one
associates an “internal propagator” mi ∈ R, corresponding to particles of mass mi.

Definition 10.12. Let G be a Feynman diagram. Its Symanzik polynomial of first kind,
denoted UG, is the following polynomial in variables {xi}ei∈E labeled by the edges of G:

UG :=
∑
T∈T1

∏
ei /∈T

xi . (10.9)

Its Symanzik polynomial of second kind, denoted FG, is

FG :=

 ∑
(T1,T2)∈T2

 ∑
pj∈PT1

∑
pk∈PT2

pj · pk
µ2

 ∏
ei /∈(T1,T2)

xi

 + UG ·
n∑

i=1

m2
i

µ2
· xi , (10.10)

where the scalar product of the d-dimensional momentum vectors is taken with respect to the
Minkowski inner product. The factor µ is a scaling factor, that we will ignore in the sequel.

Definition 10.13. The graph polynomial of a Feynman diagram G is G := UG + FG.

Example 10.14 ([5, Example 47]). Let G be the bubble graph depicted in Figure 11. The
Symanzik polynomials of G are UG = x1+x2 and FG = (x1+x2)(x1m

2
1+x2m

2
2)− p2x1x2 . ⋄
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Definition 10.15. Let f ∈ C[x1, . . . , xn] be a polynomial and a ∈ Z, b ∈ Zn. Define Ia,b to
be the integral

Ia,b(s, ν) = M
{
f s+axb

}
(ν) . (10.11)

Definition 10.16. The Feynman integral of G, in the Lee–Pomeransky representation, is

IG := M
{
G−d/2

}
. (10.12)

In the notation of (10.11), for f = G, the Feynman integral of G is IG(ν) = I0,0(−d/2, ν).

Remark 10.17. Summing over Feynman diagrams of different loops orders results in a
function which is called “scattering amplitude” and it is important to evaluate these functions
to high precision. They encode probabilities that particles scatter in a prescribed way.
Scattering amplitudes are moreover closely related to the MLE problem of discrete statistical
models in algebraic statistics, see [43]. ⋄

Remark 10.18. Read as function of the coefficients of the graph polynomial, Feynman
integrals are solutions of (restricted) GKZ systems, cf. [11]. ⋄

Feynman integrals in different dimensions of spacetime are linearly dependent and it
is important to construct relations among them. Bernstein–Sato operators help to do so:
applying the Mellin transform to both sides of Equation (10.2) yields

bf (s) ·M
{
f s
}

= M
{
Pf

}
•M

{
f s+1

}
. (10.13)

We refer to this relation as being lowering in s. This means that it provides a way for writing
the integral I0,0(s, ν) as a linear combination of integrals of type I0,b(s+1, ν) for some b ∈ Zn.
One obtains a raising relation by the simple trick of considering f ∈ C[x] as a differential
operator of order zero. Like that,

M
{
f s+1

}
= M

{
f · f s

}
= M

{
f
}
• M

{
f s
}
. (10.14)

Since σb • Ia,0 = Ia,b, relations among integrals Ia,b can hence be understood from Sn[s] • I0,0.

Example 10.19. Let f = (x−1)(x−2) ∈ C[x] from Example 10.6. The s-parametric anni-
hilator of f s is generated by the operator P = f∂x − s∂x • f ∈ D1[s]. Its Mellin transform is

M{P} = −(ν + 1 + 2s)σ − 2(ν − 1)σ−1 + 3(ν + 1) ∈ S1[s] . (10.15)

Expanding the equation M{P} •M{f s} = 0 results in the relation

−(ν + 1 + 2s)M {f s} (ν + 1)− 2(ν − 1)M {f s} (ν − 1) + 3(ν + 1)M {f s} (ν) = 0 (10.16)

of Mellin integrals. ⋄

Definition 10.20. The number of master integrals is the dimension of the C(s, ν)-vector
space

Vs,ν :=
∑
a∈Z

C(s, ν)⊗C[s,ν] (Sn • Ia,0) = C(s, ν)⊗C[s,ν] (Sn[s] • I0,0) . (10.17)
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This number can be recovered from the very affine variety (C∗)n \ V (f) as follows.

Theorem 10.21 ([5, Corollary 37]). The dimension of Vs,ν is given be the signed topological
Euler characteristic of the hypersurface complement (C∗)n \ V (f), i.e.,

dimC(s,ν)(Vs,ν) = (−1)n · χ ((C∗)n \ V (f)) .

The proof in [5, Section 3] of this statement builds on work of Loeser and Sabbah [30].

Example 10.22. Let f = (x − 1)(x − 2) from Example 10.19. Hence X = C∗ \ V (f) is
isomorphic to P1 \ {0, 1, 2,∞}. The signed Euler characteristic of X is |χ(P1)− 4| = 2. ⋄

Exercise 10.23. Determine a C(s, ν)-basis of Vs,ν for f from Example 10.19. ⋄
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