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Motivation

Two questions

1 How do the network’s properties a↵ect the geometry of its function space?
How to characterize equivariance or invariance?

2 How to parameterize equivariant and invariant networks?
Which implications does it have for network design?
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Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions (fL,✓, . . . , f1,✓)

F : RN �! F , F (✓) = fL,✓ � · · · � f1,✓ =: f✓ .

Each layer fk,✓ : Rdk�1 ! Rdk is a composition activation � (a�ne-)linear.

Training a network

Given training data D = {(bxi , byi )i=1,...,S} ⇢ Rd0 ⇥ RdL , the aim is to minimize the loss

L : RN F�! F `D�! R .

Example: For `D the squared error loss, this gives min✓2RN

PS
i=1 (f✓(bxi )� byi )2 .

On function space: minM2F kM bX � bY k2Frob.

Critical points of L
⇧ pure: critical point of `D ⇧ spurious: induced by parameterization
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Linear convolutional networks (LCNs)

⇧ linear: identity as activation function

⇧ convolutional layers with filter w 2 Rk and stride s 2 N:

↵w,s : Rd ! Rd0 , (↵w,s(x))i =
Pk�1

j=0 wjxis+j .

Geometry of linear convolutional networks [1]

Function space F(d,s) of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]

Let (d, s) be an LCN architecture with all strides > 1 and N � 1 +
P

i di si . For almost all
data D 2 (Rd0 ⇥ RdL)N , every critical point ✓c of L satisfies one of the following:

1 F (✓c) = 0, or

2 ✓c is a regular point of F and F (✓c) is a smooth, interior point of F(d,s).
In particular, F (✓c ) is a critical point of `D|

Reg
�
F�

(d,s)

�.

This is known to be false for. . .

⇧ linear fully-connected networks ⇧ stride-one LCNs

[1] K. Kohn, T. Merkh, G. Montúfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl.
Algebra Geom., 6(3):368–406, 2022.
[2] K. Kohn, G. Montúfar, V. Shahverdi, M. Trager. Function Space and Critical Points of Linear Convolutional
Networks. Preprint arXiv:2304.0572, 2023. 4/20

https://epubs.siam.org/doi/10.1137/21M1441183
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Algebraic geometry for machine learning

Natural points of entry

⇧ algebraic vision [3] ⇧ geometry of function spaces

Algebraic varieties

subsets of Cn obtained as common zero set of polynomials p1, . . . , pN 2 C[x1, . . . , xn]

Drawing real points of algebraic varieties

V(y2 � x2(x + 1)) V(x2y � y3 � z3) V(p0p2 � (p0 + p1)p1) \�2

a nodal curve a cubic surface a discrete statistical model

[3] J. Kileel and K. Kohn. Snapshot of Algebraic Vision. Preprint arXiv:2210.11443, 2022. 5/20

https://arxiv.org/abs/2210.11443


Fully connected linear neural networks

Example

F : R2⇥4 ⇥ R3⇥2 �! R3⇥4, (M1,M2) 7! M2 ·M1

parameter space: RN = R2⇥4 ⇥ R3⇥2, f1,✓ = M1, f2,✓ = M2

Its function space F is the set of real points of the determinantal variety

M2,3⇥4(R) =
n
M 2 R3⇥4 | rank(M)  2

o
.

f1,✓ f2,✓

The determinantal variety Mr ,m⇥n

For M = (mij)i,j 2 Cm⇥n: rank(M)  r , all (r + 1)⇥ (r + 1) minors of M vanish.
Define polynomials in mij

Mr,m⇥n = {M | rank(M)  r} ⇢ Cm⇥n.

Well studied! dim(Mr,m⇥n) = r · (m + n � r), Mr,m⇥n(R), singularities, . . .
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Invariant functions

f✓ : Rn ! Rr ! Rm r < min(m, n)
G = h�1, . . . ,�g i  Sn a permutation group, acting on Rn by permuting the entries

induced action on M: permuting its columns

Invariance under � 2 Sn: f✓ � � ⌘ f✓

Decomposing into cycles

The decomposition � = ⇡1 � · · · � ⇡k of � into k disjoint cycles induces a partition

P(�) = {A1, . . . ,Ak} of the set [n] = {1, . . . , n}. A1, . . . ,Ak ⇢ [n] pairwise disjoint sets

Example: The permutation � = ( 1 2 3 4 5
3 5 4 1 2 ) = (1 3 4)(2 5) 2 S5 induces the partition

P(�) = {{1, 3, 4}, {2, 5}} of [5] = {1, 2, 3, 4, 5}. For ⌘ = (1 4 3)(2 5) 6= �: P(⌘) = P(�).

Characterizing invariance MP�
!
= M

Let � 2 Sn and P(�) = {A1, . . . ,Ak} its induced partition. A matrix M = (m1| · · · |mn) is
invariant under � = ⇡1 � · · · � ⇡k if and only if for each i , the columns {mj}j2Ai coincide.

) If M is invariant under �, its rank is at most k.
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Example: rotation-invariance for p ⇥ p pictures

Setup: n = p2 an even square number, f✓ : Rn ! Rn linear

� 2 Sn: rotating a p ⇥ p picture clockwise by 90 degrees:

� : Rp⇥p ! Rp⇥p ,

0

BBB@

a11 a12 . . . a1p
a21 a22 . . . a2p
...

...
. . .

...
ap1 ap2 . . . app

1

CCCA
7!

0

BBB@

ap1 ap�1,1 . . . a11
ap2 ap�1,2 . . . a12
...

...
. . .

...
app ap,p�1 . . . a1p

1

CCCA

Identify Rp⇥p ⇠= Rn via A 7! (a1,1, a1,p , ap,p , ap,1, a1,2, a2,p , ap,p�1, ap�1,1, . . . , a1,p�1,

ap�1,p , ap,2, a2,1, a2,2, a2,p�1, ap�1,p�1, ap�1,2, . . . , a p
2 ,

p
2
, a p

2 ,
p
2 +1, a p

2 +1, p2
, a p

2 +1, p2 +1)
>.

Under this identification, � acts on Rn by the n ⇥ n block matrix

0

BBBBBBBBBB@

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

· · ·
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

1

CCCCCCCCCCA

.

N.B.: �-invariance of f✓ implies that columns 1–4, 5–8, . . . , (n � 3)–n of M coincide.
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Properties of IG
r ,m⇥n ⇢ Mr ,m⇥n

G = h�1, . . . ,�g i  Sn a permutation group
�i = ⇡i,1 � · · · � ⇡i,ki , i = 1, . . . , g decomposition into pairwise disjoint cycles ⇡i

Reduction to cyclic case

There exists � 2 Sn such that IG
r,m⇥n = I�

r,m⇥n . Any � for which P(�) is the finest

common coarsening of P(�1), . . . ,P(�g ) does the job!

Proposition

Let G = h�i  Sn be cyclic, and � = ⇡1 � · · · � ⇡k its decomposition into pairwise disjoint
cycles ⇡i . The variety I�

r,m⇥n is isomorphic to the determinantal variety Mmin(r,k),m⇥k via
a linear isomorphism  P(�) : I�

r,m⇥n ! Mmin(r,k),m⇥k . deleting repeated columns

Via that, we can determine dim(I�
r,m⇥n), deg(I�

r,m⇥n), and Sing(I�
r,m⇥n).

Example (m = 2, n = 5, r = 1)

Let � = (1 3 4)(2 5) 2 S5 and hence k = 2. Any invariant matrix M 2 M2⇥5(R) is
of the form ( a c a a c

b d b b d ) for some a, b, c, d 2 R. The rank constraint r = 1 imposes that
(c, d) = � · (a, b)> for some � 2 R, where we assume that (a, b) 6= (0, 0). Then

 P(�) :

✓
a �a a a �a
b �b b b �b

◆
7!

✓
a �a
b �b

◆
.
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Parameterizing invariance & network design

Sn 3 � = ⇡1 � · · · � ⇡k , P(�) = {A1, . . . ,Ak}

Invariance of M 2 Mm⇥n: forces columns {mj}j2Ai to coincide. For each i , remember

representative mAi so that  P(�)(M) = (mA1 | · · · |mAk ) 2 Mm⇥k .

Parameterization

Any �-invariant M 2 Mm⇥n of rank k factorizes as M =  P(�)(M) · (ei1 | · · · |ein ) .
i-th standard unit vector in column j for all j 2 Ai

Fibers of multiplication map

Let r  min(m, n). Denote by µ : Mm⇥r ⇥Mr⇥n, (A,B) 7! A · B. If rank(M) = r and
M = µ(A,B) for some A,B, then the fiber of µ over M is

µ�1(M) =
n⇣

AT�1,TB
⌘
|T 2 GLn(C)

o
⇢ Mm⇥r ⇥Mr⇥n .
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Learning invariant linear functions with autoencoders

Sn 3 � permutation splitting into disjoint cycles ⇡1 � · · · � ⇡k

P(�) induced partition {A1, . . . ,Ak} of [n]
EP(�) the k ⇥ n matrix with ei in column j for all j 2 Ai

Proposition

Let M be invariant under � and of rank k. Any factorization M = A · B is of the form

(A,B) 2
n⇣
 P(�)(M) · T�1,T · EP(�)

⌘
|T 2 GLn

o
.

This parameterization imposes a weight sharing property on the encoder!

Proposition

Let � 2 Sn consist of k disjoint cycles and let r  k. Consider the linear autoencoder
Rn ! Rr ! Rn with fully-connected dense decoder Rr ! Rn and encoder Rn ! Rr , with
�-weight sharing on the encoder. Its function space is Ir,n⇥n(R).
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Weight sharing property of the encoder

Example

Let m = n = 5, r = 2 and � = (1 3 4)(2 5) 2 S5. If a matrix M = AB 2 I�
2,5⇥5 is invariant

under �, the encoder factor B has to fulfill the following weight sharing property:

B

Figure: The �-weight sharing property imposed on the encoder.
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Euclidean distance degree

Motivation: complexity during and after training

1 For an arbitrary learned function, find a nearest invariant function .

2 Training invariant networks: determine pure critical points for Euclidean loss .

Definition

The Euclidean distance (ED) degree of an algebraic variety X in RN is the number of
complex critical points of the squared Euclidean distance from X to a general point outside
the variety. It is denoted by EDdegree(X ).

Examples: EDdegree(circle) = 2 , EDdegree(ellipse) = 4 .

ED degree of Mr ,m⇥n(R) and I�
r ,m⇥n(R)

Let � = ⇡1 � · · · � ⇡k 2 Sn and r  min(m, n). Then

⇧ EDdegree(Mr,m⇥n(R)) =
�
min(m,n)

r

�
,

⇧ EDdegree
�
IG
r,m⇥n(R)

�
= EDdegree

�
Mmin(r,k),m⇥k(R)

�
=

�min(m,k)
min(r,k)

�
.

[4] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an
Algebraic Variety. Found. Comp. Math., 16:99–149, 2016. 13/20



Equivariant linear autoencoders

f✓ : Rn �! Rr �! Rn r < n
G = h�i  Sn a cyclic permutation group generated by a single � 2 Sn

Equivariance under �: f✓ � � ⌘ � � f✓ .

For matrices: M equivariant i↵ MP� = P�M . commutator of P�

In- and output

⇧ n = p2 : p ⇥ p image with real pixels ⇧ n = p3 : cubic 3D scenery

Finding good bases

Exploiting similarity transforms of the form

P� =

0

BBB@

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

1

CCCA
⇠T17!

0

BBB@

0 0 1
1 0 0
0 1 0

0

0
0 1
1 0

1

CCCA
⇠T27!

0

BBB@

1
⇣3

⇣23
1

�1

1

CCCA
.

permutation matrix block circulant matrix diagonal matrix

Second base change involves complex Vandermonde matrices. EDdegree not preserved!
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Finding good bases

After a real, orthogonal base change Q� , the rotation � 2 S9 is represented by

I3 �(� I2)�
✓
0 �1
1 0

◆
�

✓
0 �1
1 0

◆
.

Matrices that commute with it:

0

BBBBBBBBBB@

↵11 ↵12 ↵13
↵21 ↵22 ↵23
↵31 ↵32 ↵33

0 0

0 �12 �22
�21 �23

0

0 0

�1 ��2 �1 ��2
�2 �1 �2 �1
✏1 �✏2 ⌘1 �⌘2
✏2 ✏1 ⌘2 ⌘1

1

CCCCCCCCCCA

.

Realization map

R : C �!
(✓

a �b
b a

◆ ����� a, b 2 R
)
, z 7!

✓
Re(z) �Im(z)
Im(z) Re(z)

◆
.

scaled rotation matrix
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Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of E�
r,n⇥n(R)

that contain a matrix of rank r and the non-negative integer solutions r = (rl,m) of

r1,1 + r2,1 +
X

l�3

X

m2 (Z/lZ)⇥,
1
2<

m
l <1

2 · rl,m = r , where 0  rl,m  dl .

dl the dimension of the eigenspace of P� of the eigenvalue ⇣l = e2⇡i/l

The irreducible component E�,r
r,n⇥n(R) corresponding to such an integer solution r after

the real orthogonal base change Q� is

Mr1,1,d1⇥d1(R) ⇥ Mr2,1,d2⇥d2(R) ⇥
Y

l�3

Y

m2 (Z/lZ)⇥,
1
2<

m
l <1

R(Mrl,m,dl⇥dl (C)) .

Via that: dim X deg X EDdegree X Sing X

Consequence

Equivariant linear functions can not be parameterized by a single neural network! One
needs to parameterize each irreducible component of E�

r,n⇥n separately.
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Weight sharing on de- and encoder

The real irreducible component (E�,r
3,9⇥9)

⇠Q� with r = (1, 0, 1) is

M1,3⇥3(R) ⇥ M0,2⇥2(R) ⇥ R (M1,2⇥2(C)) .

Every matrix in this component can be obtained as product of a 9⇥ 3 and a 3⇥ 9 matrix
of the form ⇤ 2 R, ? 2 C

0

@
⇤ ⇤ ⇤ 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

R
�
? ?

�

1

A
>

·

0

@
⇤ ⇤ ⇤ 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

R
�
? ?

�

1

A .

Figure: Weight-sharing of the encoder and decoder matrices. Edges of the same color share the
same weight—and di↵er by sign, in case one of the edges is dashed.
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Training on MNIST

MNIST 60.000 images of handwritten digits, size 28⇥ 28 each
R784 ! Rr ! R784 linear autoencoder, bottleneck r = 99

� 2 S784 permutation of pixels: translating to the right

Figure: Top row: Nine samples from the MNIST [5] test dataset, shifted horizontally randomly by
up to six pixels. Middle row: Output of a linear equivariant autoencoder designed to be equivariant
under horizontal translations. The network architecture is determined by the integer vector r.
Bottom row: Output of a dense linear autoencoder with r = 99 without equivariance imposed.

[5] L. Deng. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal
Pro. Mag., 29(6):141–142, 2012. 18/20



Training on MNIST

Irreducible components

E�
99,784⇥784 has many irreducible components: 72,425,986,088,826

Choose component E�,r
99,784⇥784 corresponding to

r = (r1,1, r28,27, r14,13, r28,25, r7,6, r28,23, r14,11, r4,3, r7,5, r28,19, r14,9, r28,17, r7,4, r28,15, r2,1)

= (13, 10, 9, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0) .

Training loss

Equivariant equal-rank equivariant high-pass equivariant non-equivariant
Loss 0.0082 0.0206 0.1063 0.0057

Table: Comparison of average square loss values per pixel between linear equivariant and non-
equivariant autoencoders on the MNIST test dataset.

E�ciency of equivariant architecture

Significant drop in number of parameters compared to general dense linear autoencoder!
2 · 99 · 784 = 155,232 �! 5,544 = 2 · (28 · 13 + 2 · 28 · (10 + 9 + 8 + 7 + 5 + 3 + 1))

Implementations in Python

Soon to be available at https://github.com/vahidshahverdi/Equivariant
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Conclusion

Key points: algebraic geometry helps for. . .

1 a thorough study of function spaces of linear neural networks.
fully connected, convolutional

2 understanding the training process.
locating critical points of the loss

3 the design of neural networks.
rank constraint, weight sharing properties

4 determining the complexity during and post training.
ED degree of real varieties

Future work

⇧ full characterization of equivariance
non-cyclic permutation groups

⇧ variation of the network architecture
more layers, non-linear activation functions

Tack för uppmärksamheten!
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