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Two questions

® How do the network’s properties affect the geometry of its function space?
How to characterize equivariance or invariance?

® How to parameterize equivariant and invariant networks?
Which implications does it have for network design?
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Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions (frg, ..., f1,¢)
F: RN — F, F() = figo---0fig = fo.

Each layer fi o: R%-1 — R% is a composition activation o (affine-)linear.

Training a network

Given training data D = {(X, %i)i=1,....,s} C R% x R%, the aim is to minimize the loss

RV 2R,

Example: For {p the squared error loss, this gives mingcgn Z,-SZ;L (fa(%) — 7i)* .

On function space: minycr [|[MX — Y |[Z.-
Critical points of £
© pure: critical point of /p < spurious: induced by parameterization
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Linear convolutional networks (LCNs)

¢ linear: identity as activation function

o convolutional layers with filter w € R¥ and stride s € N:

aws: R RY, (aws(x)); = Y05y wixiss; -

Geometry of linear convolutional networks [1]

Function space F(q,5) of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]
Let (d,s) be an LCN architecture with all strides > 1 and N > 1+ 3", d;s;. For almost all
data D € (R® x R¥)", every critical point . of L satisfies one of the following:

® F(0.) =0, or

® 0. is a regular point of F and F(f.) is a smooth, interior point of Fgs).

In particular, F(6.) is a critical point of {p .
6 e (75.)

This is known to be false for. . .

¢ linear fully-connected networks © stride-one LCNs

[1] K. Kohn, T. Merkh, G. Monttfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl.
Algebra Geom., 6(3):368-406, 2022.

[2] K. Kohn, G. Montifar, V. Shahverdi, M. Trager. Function Space and Critical Points of Linear Convolutional
Networks. Preprint arXiv:2304.0572, 2023. 4/20
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Algebraic geometry for machine learning

Natural points of entry

© algebraic vision [3] © geometry of function spaces

Algebraic varieties

subsets of C" obtained as common zero set of polynomials p1, ..., py € C[xi, ..., Xxi]

Drawing real points of algebraic varieties

V(y? = x*(x +1)) V(xPy —y* = 23) V(pop2 — (po + p1)p1) N Az
a nodal curve a cubic surface a discrete statistical model

[3] J. Kileel and K. Kohn. Snapshot of Algebraic Vision. Preprint arXiv:2210.11443, 2022. 5/20
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Fully connected linear neural networks

Example
F: R x R¥? — R¥* (My, My) — My - My Ao fo
parameter space: RV = R2X4 x R3%2, f; o = My, fh g = M,

Its function space F is the set of real points of the determinantal variety

M 3xa(R) = {M e R**| rank(M) < 2}.

The determinantal variety M, mxn

For M = (my)i; € C™*": rank(M) <r < all (r+1) X (r+ 1) minors of M vanish.
Define polynomials in mj;

M mxn = {M]| rank(M) < r} Cc C™*".

Well studied! dim(M; mxn) = r-(m+n—r), M mxa(R), singularities, ...
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Invariant functions

fo: R" >R — R" r < min(m, n)
G ={o1,...,05) <S8, a permutation group, acting on R" by permuting the entries
induced action on M: permuting its columns

Invariance under 0 € S,;: oo = fo

Decomposing into cycles

The decomposition ¢ = 71 o --- o m, of o into k disjoint cycles induces a partition
‘ P(o) ={A1,..., A} ‘ of the set [n] = {1,...,n}. Ai,..., A, C [n] pairwise disjoint sets

345) = (134)(25) € Ss induces the partition
P(o) = {{1,3,4},{2,5}} of [5] = {1,2,3,4,5}. Forn=(143)(25)# o: P(n) = P(0).

Characterizing invariance MP, = M

Let o € Sp and P(0) = {Aq, ..., A} its induced partition. A matrix M = (my]---|m,) is
invariant under o = 71 o - - - o T, if and only if for each i, the columns {m;};ca; coincide.

= If M is invariant under o, its rank is at most k.
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Example: rotation-invariance for p X p pictures

Setup: n = p? an even square number, fp: R” — R" linear

o € S, rotating a p X p picture clockwise by 90 degrees:

ail ai2 .. aip apl ap—1,1 o ail
" “ a ax»n ... axp ap2  ap-12 ... a2
o: RPXP 5 RPXP, . . . . —
apl 32 ... app app  App—1 ... aAp
. % "o

Identify RP*P 22 R" via A+ (a1,1, a1,p, 3p,p; ap,1, 31,2, @2,ps Ap,p—1, Bp—1,1, - - - 5 3, p—1,

-

3p—1,p,3p,2,32,1,32,2,32,p—1,3p—1,p—1,3p—1.2, -+ 32 £, 3L P 41,311 8,38 11 £ y1)

Under this identification, o acts on R" by the n x n block matrix

0 0 0 1
1 0 0 O
0 1 0 O
0O 0 1 0
0O 0 o0 1
1 0 0 O
0 1 0 O
0O 0 1 0
N.B.: o-invariance of fy implies that columns 1-4, 5-8, ..., (n — 3)—-n of M coincide.
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Properties of Z°,.., C My mxn

G = (o1,...,04) < S a permutation group
0j = mM10---0M, i =1,...,8 decomposition into pairwise disjoint cycles m;

Reduction to cyclic case
There exists ¢ € S, such that I,Gmx,, =17 mxn |- Any o for which P(c) is the finest

common coarsening of P(a1),...,P(0g) does the job!

Proposition

Let G = (o) < S, be cyclic, and 0 = 1 0 - - - o 7 its decomposition into pairwise disjoint
cycles ;. The variety Z7 .., is isomorphic to the determinantal variety Mpin(r,k),mxk Via
a linear isomorphism ¥p(): Z7 mxn — Mumin(r,k),mxk -  deleting repeated columns

), and Sing(Z?

Via that, we can determine dim(Z7 . ), deg(Z7 7 mxn)-

r,mxn
,n=5r=1)

5
b

Example (m

(m=2
Let o = (134)(
of the form (3

(c,d) = A- (2, b)

€ Ss and hence k = 2. Any invariant matrix M € Moays(R) is
) for some a, b,c,d € R. The rank constraint r = 1 imposes that

for some A € R, where we assume that (a, b) # (0,0). Then

w_a)\aaa)\a’_)a)\a
P@) \b Ab b b Xb b Ab)-®

)25)
dbbd
T
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Parameterizing invariance & network design

Shdo=mo---om, Plo)={A1,..., A}

Invariance of M € My n: forces columns {m;};ca, to coincide. For each i, remember

representative my, so that ‘ Ypy(M) = (may |-+ |ma,) € Mmxk. ‘

Parameterization

Any o-invariant M € Mpx, of rank k factorizes as M = ¥p)(M) - (1] - |ei,) -
i-th standard unit vector in column j for all j € A;

Fibers of multiplication map

Let r < min(m, n). Denote by pi: Mmx, X M;xn, (A, B) — A-B. If rank(M) = r and
M = p(A, B) for some A, B, then the fiber of u over M is

(M) = {(AT’l, TB) 1T e GL,,((C)} C Mumxr X Mysn .
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Learning invariant linear functions with autoencoders

S, >0  permutation splitting into disjoint cycles 71 0 -« - o
P(o) induced partition {Ay, ..., Ax} of [n]
Ep(s) the k x n matrix with ¢; in column j for all j € A;

Proposition
Let M be invariant under o and of rank k. Any factorization M = A - B is of the form

(A, B) € {(wp(g)(/w)- T T~EP(U)) |T e GL,,}.

This parameterization imposes a weight sharing property on the encoder!

Proposition

Let 0 € S, consist of k disjoint cycles and let r < k. Consider the linear autoencoder
R" — R" — R" with fully-connected dense decoder R" — R"” and encoder R" — R", with
o-weight sharing on the encoder. lIts function space is Z; nxn(R).
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Weight sharing property of the encoder

Example

Let m=n=5,r=2and o =(134)(25) € Ss. If a matrix M = AB € I7 5,5 is invariant
under o, the encoder factor B has to fulfill the following weight sharing property:

B

Figure: The o-weight sharing property imposed on the encoder.
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Euclidean distance degree

Motivation: complexity during and after training
@ For an arbitrary learned function, find a nearest invariant function .

@® Training invariant networks: determine pure critical points for Euclidean loss .

Definition

The Euclidean distance (ED) degree of an algebraic variety X' in RV is the number of
complex critical points of the squared Euclidean distance from X’ to a general point outside
the variety. It is denoted by EDdegree(X).

Examples: EDdegree(circle) =2, EDdegree(ellipse) = 4.

ED degree of M, mxn(R) and Z¢

r,an(R)
Let o =mo---om €S, and r < min(m, n). Then
o EDdegree(M;mxn(R)) = (""™7),

o EDdegree (If,,,x,,(R)) = EDdegree (Mmin(r,k),mxk(R)) = (?E((T:)))

[4] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an
Algebraic Variety. Found. Comp. Math., 16:99-149, 2016. 13/20



Equivariant linear autoencoders

fo: R"—R —R" r<n
G=(0)<S, a cyclic permutation group  generated by a single o € S,

Equivariance under 0. oo = cofy .

For matrices: M equivariant iff MP, = P,M . commutator of P,

In- and output

o n=p*: px pimage with real pixels o n=p®: cubic 3D scenery

Finding good bases

Exploiting similarity transforms of the form

0 0 1 0 O 0 0 1 1
0 0 0 0 1} ., 1 0 O 0 ~ @3
P, =10 0 0 1 0| —» [0 1 0 — &
10 0 0 O 0 ‘ 01 1
0 1 0 0 O 1 0 -1
permutation matrix block circulant matrix diagonal matrix

Second base change involves complex Vandermonde matrices. EDdegree not preserved!
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Finding good bases

After a real, orthogonal base change @, , the rotation o € Sy is represented by

0 -1 0 -1
weems (D) e (0 2
Matrices that commute with it:

@11 12 Q13

a1 o a3 0 0
azl a3z a3z
B2 B2
0 Bo1 B3 0
T -2 01 —02
0 0 Y2 m & &
€ —e M —M

€2 €1 2 m

Realization map

re—{(; )

Re(z) —Tm(z)
a,be R}, zZ — (Jn:(z) 9‘%:22) > .

scaled rotation matrix
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Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of &7, ,(R)
that contain a matrix of rank r and the non-negative integer solutions r = (r;,,,) of

ni+nri+ Z Z 2-nm =r, where 0<r,<d.

123 me (z/1Z)%,
i<m«a

d; the dimension of the eigenspace of P, of the eigenvalue ¢; = e2™//!

,r

The irreducible component &7, ,(R) corresponding to such an integer solution r after
the real orthogonal base change Q. is

Mr1,1,d1><d1(R) X M’2,17d2><d2(R) X H H R(Mf/,myd/Xd/((c))'
123 me(z/1z)%,
l<ma

Via that: dim v deg v’ EDdegree vv Sing v
Consequence

Equivariant linear functions can not be parameterized by a single neural network! One

needs to parameterize each irreducible component of £7 ., separately.
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Weight sharing on de- and encoder

The real irreducible component (£5y,)~9 with r = (1,0,1) is
Misx3(R) x Moax2(R) x R (Mi2x2(C)) .

Every matrix in this component can be obtained as product of a 9 X 3 and a 3 x 9 matrix
of the form +xeR, x€C

* ok
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o
o

0
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o
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Figure: Weight-sharing of the encoder and decoder matrices. Edges of the same color share the
same weight—and differ by sign, in case one of the edges is dashed.
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Training on MNIST

MNIST 60.000 images of handwritten digits, size 28 x 28 each
R™® 5 R" — R™*  linear autoencoder, bottleneck r = 99
o € Srsa permutation of pixels: translating to the right

ofolo
BIBIY
olole
EEE
WG]G
ololo
Vfo]o
al Gl
V01O

Figure: Top row: Nine samples from the MNIST [5] test dataset, shifted horizontally randomly by
up to six pixels. Middle row: Output of a linear equivariant autoencoder designed to be equivariant
under horizontal translations. The network architecture is determined by the integer vector r.
Bottom row: Output of a dense linear autoencoder with r = 99 without equivariance imposed.

[5] L. Deng. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal
Pro. Mag., 29(6):141-142, 2012. 18/20



Training on MNIST

Irreducible components

E5,784x 784 has many irreducible components: 72,425,986,088,826
Choose component £g5%g,575, Corresponding to

r = (r,1, 18,27, 114,13, 128,25, 17,6, 128,23, 114,11, 14,3, 17,5, 128,19, I14,9, 128,17, 17,4, 128,15, 12,1)
= (13,10,9,8,7,5,3,1,0,0,0,0,0,0,0).

Training loss

Equivariant  equal-rank equivariant  high-pass equivariant  non-equivariant
Loss 0.0082 0.0206 0.1063 0.0057

Table: Comparison of average square loss values per pixel between linear equivariant and non-
equivariant autoencoders on the MNIST test dataset.

Efficiency of equivariant architecture

Significant drop in number of parameters compared to general dense linear autoencoder!
2:.99.784 = 155,232 —» 5544 = 2-(28-13+2-28-(10+9+8+7+5+3+1))
Implementations in Python

Soon to be available at https://github.com/vahidshahverdi/Equivariant
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Conclusion

Key points: algebraic geometry helps for. . .
@ a thorough study of function spaces of linear neural networks.
fully connected, convolutional

® understanding the training process.
locating critical points of the loss

© the design of neural networks.
rank constraint, weight sharing properties

O determining the complexity during and post training.
ED degree of real varieties

Future work

o full characterization of equivariance
non-cyclic permutation groups

¢ variation of the network architecture
more layers, non-linear activation functions

Tack foér uppmérksamheten!
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