

Geometry of Equivariant Linear Neural Networks

Kathlén Kohn, *Anna-Laura Sattelberger*, Vahid Shahverdi arxiv:2309.13736 [cs.LG]

MAM seminar

Mälardalens Universitet, Västerås April 10, 2024

Motivation

Two questions

- How do the network's properties affect the geometry of its function space? How to characterize equivariance or invariance?
- How to parameterize equivariant and invariant networks? Which implications does it have for network design?

Training neural networks

Neural networks

A neural network F of depth L is a parameterized family of functions $(f_{L,\theta},\ldots,f_{1,\theta})$

$$F: \mathbb{R}^N \longrightarrow \mathcal{F}, \quad F(\theta) = f_{L,\theta} \circ \cdots \circ f_{1,\theta} =: f_{\theta}.$$

Each layer $f_{k,\theta} \colon \mathbb{R}^{d_{k-1}} \to \mathbb{R}^{d_k}$ is a composition activation \circ (affine-)linear.

Training a network

Given training data $\mathcal{D} = \{(\widehat{x_i}, \widehat{y_i})_{i=1,...,5}\} \subset \mathbb{R}^{d_0} \times \mathbb{R}^{d_L}$, the aim is to minimize the loss

$$\boxed{ \mathcal{L} \colon \; \mathbb{R}^N \overset{F}{\longrightarrow} \mathcal{F} \overset{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}_{\geq 0} \,. }$$

Example: For $\ell_{\mathcal{D}}$ the squared error loss, this gives $\min_{\theta \in \mathbb{R}^N} \sum_{i=1}^{S} (f_{\theta}(\widehat{x_i}) - \widehat{y_i})^2$. On **function space**: $\min_{M \in \mathcal{F}} \|M\widehat{X} - \widehat{Y}\|_{\text{Frob}}^2$.

Critical points of ${\cal L}$

 \diamond **pure**: critical point of $\ell_{\mathcal{D}}$ \diamond **spurious**: induced by parameterization

Linear convolutional networks (LCNs)

- linear: identity as activation function
- ⋄ convolutional layers with filter $w \in \mathbb{R}^k$ and stride $s \in \mathbb{N}$:

$$\alpha_{w,s} \colon \mathbb{R}^d \to \mathbb{R}^{d'}, \quad (\alpha_{w,s}(x))_i = \sum_{j=0}^{k-1} w_j x_{is+j}.$$

Geometry of linear convolutional networks [1]

Function space $\mathcal{F}_{(\mathbf{d},\mathbf{s})}$ of LCN: semi-algebraic set, Euclidean-closed

Theorem [2]

Let (\mathbf{d}, \mathbf{s}) be an LCN architecture with all strides > 1 and $N \ge 1 + \sum_i d_i s_i$. For almost all data $\mathcal{D} \in (\mathbb{R}^{d_0} \times \mathbb{R}^{d_L})^N$, every critical point θ_c of \mathcal{L} satisfies one of the following:

- $\mathbf{0}$ $F(\theta_c) = 0$, or
- 2 θ_c is a regular point of F and $F(\theta_c)$ is a smooth, interior point of $\mathcal{F}_{(\mathbf{d},\mathbf{s})}$. In particular, $F(\theta_c)$ is a critical point of $\ell_{\mathcal{D}}|_{\text{Reg}(\mathcal{F}_{\mathcal{A},c}^{\diamond})}$.

This is known to be false for...

 linear fully-connected networks stride-one LCNs

[1] K. Kohn, T. Merkh, G. Montúfar, M. Trager. Geometry of Linear Convolutional Networks. SIAM J. Appl. Algebra Geom., 6(3):368-406, 2022.

Networks. Preprint arXiv:2304.0572, 2023.

Algebraic geometry for machine learning

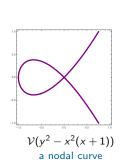
Natural points of entry

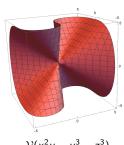
♦ algebraic vision [3]
♦ geometry of function spaces

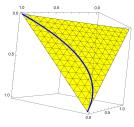
Algebraic varieties

subsets of \mathbb{C}^n obtained as common zero set of polynomials $p_1,\ldots,p_N\in\mathbb{C}[x_1,\ldots,x_n]$

Drawing real points of algebraic varieties





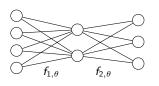


 $\mathcal{V}(p_0p_2 - (p_0 + p_1)p_1) \cap \Delta_2$ a discrete statistical model

Fully connected linear neural networks

Example

$$\begin{split} F\colon & \, \mathbb{R}^{2\times 4}\times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4}, \ \ \, \left(\textit{M}_{1}, \textit{M}_{2}\right) \mapsto \textit{M}_{2}\cdot \textit{M}_{1} \\ & \text{parameter space:} & \, \mathbb{R}^{\textit{N}} = \mathbb{R}^{2\times 4}\times \mathbb{R}^{3\times 2}, \ \, \textit{f}_{1,\theta} = \textit{M}_{1}, \ \textit{f}_{2,\theta} = \textit{M}_{2} \end{split}$$



Its function space ${\mathcal F}$ is the set of real points of the determinantal variety

$$\mathcal{M}_{2,3 imes4}(\mathbb{R}) \,=\, \left\{M\in\mathbb{R}^{3 imes4}\,|\,\,\mathsf{rank}(M)\leq 2
ight\}.$$

The determinantal variety $\mathcal{M}_{r,m\times n}$

For $M=(m_{ij})_{i,j}\in\mathbb{C}^{m\times n}$: rank $(M)\leq r\Leftrightarrow \text{all }(r+1)\times(r+1)\text{ minors of }M$ vanish. Define

$$\mathcal{M}_{r,m\times n} = \{M \mid \operatorname{rank}(M) \leq r\} \subset \mathbb{C}^{m\times n}.$$

Well studied! dim $(\mathcal{M}_{r,m\times n}) = r \cdot (m+n-r)$, $\mathcal{M}_{r,m\times n}(\mathbb{R})$, singularities, . . .

Invariant functions

$$\begin{array}{ll} f_{\theta} \colon \: \mathbb{R}^{n} \to \mathbb{R}^{r} \to \mathbb{R}^{m} & r < \min(m,n) \\ G = \langle \sigma_{1}, \ldots, \sigma_{g} \rangle \leq \mathcal{S}_{n} & \text{a permutation group, acting on } \mathbb{R}^{n} \text{ by permuting the entries induced action on } M : \text{permuting its columns} \\ \end{array}$$

Invariance under $\sigma \in \mathcal{S}_n$: $f_{\theta} \circ \sigma \equiv f_{\theta}$

Decomposing into cycles

The decomposition $\sigma = \pi_1 \circ \cdots \circ \pi_k$ of σ into k disjoint cycles induces a partition $\boxed{\mathcal{P}(\sigma) = \{A_1, \dots, A_k\}}$ of the set $[n] = \{1, \dots, n\}$. $A_1, \dots, A_k \subset [n]$ pairwise disjoint sets

Example: The permutation $\sigma = \left(\frac{1}{3} \frac{2}{5} \frac{3}{4} \frac{4}{1} \frac{5}{2} \right) = (134)(25) \in \mathcal{S}_5$ induces the partition $\mathcal{P}(\sigma) = \{\{1,3,4\},\{2,5\}\}$ of $[5] = \{1,2,3,4,5\}$. For $\eta = (143)(25) \neq \sigma$: $\mathcal{P}(\eta) = \mathcal{P}(\sigma)$.

Characterizing invariance $MP_{\sigma} \stackrel{!}{=} M$

Let $\sigma \in \mathcal{S}_n$ and $\mathcal{P}(\sigma) = \{A_1, \dots, A_k\}$ its induced partition. A matrix $M = (m_1 | \dots | m_n)$ is invariant under $\sigma = \pi_1 \circ \dots \circ \pi_k$ if and only if for each i, the columns $\{m_j\}_{j \in A_i}$ coincide.

 \Rightarrow If M is invariant under σ , its rank is at most k.

Example: rotation-invariance for $p \times p$ pictures

Setup: $n = p^2$ an even square number, $f_\theta : \mathbb{R}^n \to \mathbb{R}^n$ linear

 $\sigma \in \mathcal{S}_n$: rotating a $p \times p$ picture clockwise by 90 degrees:

$$\sigma \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}, \quad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pp} \end{pmatrix} \mapsto \begin{pmatrix} a_{p1} & a_{p-1,1} & \dots & a_{11} \\ a_{p2} & a_{p-1,2} & \dots & a_{12} \\ \vdots & \vdots & \ddots & \vdots \\ a_{pp} & a_{p,p-1} & \dots & a_{1p} \end{pmatrix}$$

Identify $\mathbb{R}^{p \times p} \cong \mathbb{R}^{n}$ via $A \mapsto (a_{1,1}, a_{1,p}, a_{p,p}, a_{p,1}, a_{1,2}, a_{2,p}, a_{p,p-1}, a_{p-1,1}, \dots, a_{1,p-1}, a_{p-1,p}, a_{p,2}, a_{2,1}, a_{2,2}, a_{2,p-1}, a_{p-1,p-1}, a_{p-1,2}, \dots, a_{\frac{p}{2}, \frac{p}{2}}, a_{\frac{p}{2}, \frac{p}{2}+1}, a_{\frac{p}{2}+1, \frac{p}{2}}, a_{\frac{p}{2}+1, \frac{p}{2}+1})^{\top}$.

Under this identification, σ acts on \mathbb{R}^n by the $n \times n$ block matrix

N.B.: σ -invariance of f_{θ} implies that columns 1–4, 5–8, ..., (n-3)–n of M coincide.

Properties of $\mathcal{I}_{r,m\times n}^{\mathsf{G}} \subset \mathcal{M}_{r,m\times n}$

$$\begin{array}{ll} G = \langle \sigma_1, \ldots, \sigma_g \rangle \leq \mathcal{S}_n & \text{a permutation group} \\ \sigma_i = \pi_{i,1} \circ \cdots \circ \pi_{i,k_i}, \ i = 1, \ldots, g & \text{decomposition into pairwise disjoint cycles } \pi_i \end{array}$$

Reduction to cyclic case

There exists $\sigma \in \mathcal{S}_n$ such that $\boxed{\mathcal{I}_{r,m \times n}^G = \mathcal{I}_{r,m \times n}^\sigma}$. Any σ for which $\mathcal{P}(\sigma)$ is the **finest common coarsening** of $\mathcal{P}(\sigma_1), \dots, \mathcal{P}(\sigma_g)$ does the job!

Proposition

Let $G = \langle \sigma \rangle \leq \mathcal{S}_n$ be cyclic, and $\sigma = \pi_1 \circ \cdots \circ \pi_k$ its decomposition into pairwise disjoint cycles π_i . The variety $\mathcal{I}^{\sigma}_{r,m \times n}$ is isomorphic to the determinantal variety $\mathcal{M}_{\min(r,k),m \times k}$ via a linear isomorphism $\psi_{\mathcal{P}(\sigma)} \colon \mathcal{I}^{\sigma}_{r,m \times n} \to \mathcal{M}_{\min(r,k),m \times k}$. deleting repeated columns

Via that, we can determine $\dim(\mathcal{I}^{\sigma}_{r,m\times n})$, $\deg(\mathcal{I}^{\sigma}_{r,m\times n})$, and $\operatorname{Sing}(\mathcal{I}^{\sigma}_{r,m\times n})$.

Example
$$(m = 2, n = 5, r = 1)$$

Let $\sigma=(1\,3\,4)(2\,5)\in\mathcal{S}_5$ and hence k=2. Any invariant matrix $M\in\mathcal{M}_{2\times 5}(\mathbb{R})$ is of the form $\left(\begin{smallmatrix} a&c&a&a&c\\b&d&b&d\end{smallmatrix}\right)$ for some $a,b,c,d\in\mathbb{R}$. The rank constraint r=1 imposes that $(c,d)=\lambda\cdot(a,b)^{\top}$ for some $\lambda\in\mathbb{R}$, where we assume that $(a,b)\neq(0,0)$. Then

$$\psi_{\mathcal{P}(\sigma)} \colon \begin{pmatrix} a & \lambda a & a & a & \lambda a \\ b & \lambda b & b & b & \lambda b \end{pmatrix} \mapsto \begin{pmatrix} a & \lambda a \\ b & \lambda b \end{pmatrix}.$$

Parameterizing invariance & network design

$$S_n \ni \sigma = \pi_1 \circ \cdots \circ \pi_k, \ \mathcal{P}(\sigma) = \{A_1, \ldots, A_k\}$$

Invariance of $M \in \mathcal{M}_{m \times n}$: forces columns $\{m_j\}_{j \in A_j}$ to coincide. For each i, remember representative m_{A_i} so that $\boxed{\psi_{\mathcal{P}(\sigma)}(M) = (m_{A_1} \mid \cdots \mid m_{A_k}) \in \mathcal{M}_{m \times k}}$.

Parameterization

Any σ -invariant $M \in \mathcal{M}_{m \times n}$ of rank k factorizes as $M = \psi_{\mathcal{P}(\sigma)}(M) \cdot (e_{i_1} | \cdots | e_{i_n})$. i-th standard unit vector in column j for all $j \in A_i$

Fibers of multiplication map

Let $r \leq \min(m, n)$. Denote by $\mu \colon \mathcal{M}_{m \times r} \times \mathcal{M}_{r \times n}, \ (A, B) \mapsto A \cdot B$. If $\operatorname{rank}(M) = r$ and $M = \mu(A, B)$ for some A, B, then the fiber of μ over M is

$$\mu^{-1}(M) = \left\{ \left(AT^{-1}, TB \right) \mid T \in \mathsf{GL}_r(\mathbb{C}) \right\} \subset \mathcal{M}_{m \times r} \times \mathcal{M}_{r \times n}.$$

Representing invariant linear functions with autoencoders

- $S_n \ni \sigma$ permutation splitting into disjoint cycles $\pi_1 \circ \cdots \circ \pi_k$
- $\mathcal{P}(\sigma)$ induced partition $\{A_1,\ldots,A_k\}$ of [n]
- $E_{\mathcal{P}(\sigma)}$ the $k \times n$ matrix with e_i in column j for all $j \in A_i$

Proposition

Let M be invariant under σ and of rank k. Any factorization $M = A \cdot B$ is of the form

$$(A,B) \in \left\{ \left(\psi_{\mathcal{P}(\sigma)}(M) \cdot T^{-1}, T \cdot E_{\mathcal{P}(\sigma)} \right) \mid T \in \mathsf{GL}_k \right\}.$$

This parameterization imposes a weight sharing property on the encoder!

Proposition

Let $\sigma \in S_n$ consist of k disjoint cycles and let $r \leq k$. Consider the linear autoencoder $\mathbb{R}^n \to \mathbb{R}^r \to \mathbb{R}^n$ with fully-connected dense decoder $\mathbb{R}^r \to \mathbb{R}^n$ and encoder $\mathbb{R}^n \to \mathbb{R}^r$, with σ -weight sharing on the encoder. Its function space is $\mathcal{I}_{r,n\times n}(\mathbb{R})$.

Weight sharing property of the encoder

Example

Let m=n=5, r=2 and $\sigma=(1\,3\,4)(2\,5)\in\mathcal{S}_5$. If a matrix $M=AB\in\mathcal{I}_{2,5\times 5}^\sigma$ is invariant under σ , the encoder factor B has to fulfill the following weight sharing property.

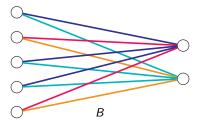


Figure: The σ -weight sharing property imposed on the encoder.

Euclidean distance degree

Motivation: complexity during and after training

- For an arbitrary learned function, find a nearest invariant function .
- 2 Training invariant networks: determine pure critical points for Euclidean loss.

Definition

The **Euclidean distance (ED) degree** of an algebraic variety \mathcal{X} in \mathbb{R}^N is the number of complex critical points of the squared Euclidean distance from \mathcal{X} to a general point outside the variety. It is denoted by $\mathsf{EDdegree}(\mathcal{X})$.

Examples: EDdegree(circle) = 2, EDdegree(ellipse) = 4.

ED degree of $\mathcal{M}_{r,m imes n}(\mathbb{R})$ and $\mathcal{I}^{\sigma}_{r,m imes n}(\mathbb{R})$

Let $\sigma = \pi_1 \circ \cdots \circ \pi_k \in S_n$ and $r < \min(m, n)$. Then

- \diamond EDdegree $(\mathcal{M}_{r,m\times n}(\mathbb{R})) = \binom{\min(m,n)}{r}$,
- $\diamond \; \; \mathsf{EDdegree} \left(\mathcal{I}^{\mathsf{G}}_{r,m \times n}(\mathbb{R}) \right) \; = \; \mathsf{EDdegree} \left(\mathcal{M}_{\mathsf{min}(r,k),m \times k}(\mathbb{R}) \right) \; = \; \left(\substack{\mathsf{min}(m,k) \\ \mathsf{min}(r,k)} \right).$

^[4] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, R. R. Thomas. The Euclidean Distance Degree of an Algebraic Variety. Found. Comp. Math., 16:99–149, 2016.

Equivariant linear autoencoders

$$\begin{array}{ll} f_{\theta} \colon \ \mathbb{R}^{n} \longrightarrow \mathbb{R}^{r} \longrightarrow \mathbb{R}^{n} & r < n \\ G = \langle \sigma \rangle \leq \mathcal{S}_{n} & \text{a cyclic permutation group} & \text{generated by a single } \sigma \in \mathcal{S}_{n} \end{array}$$

Equivariance under σ : $f_{\theta} \circ \sigma \equiv \sigma \circ f_{\theta}$

For matrices: M equivariant iff $MP_{\sigma} = P_{\sigma}M$. commutator of P_{σ}

In- and output

$$\diamond n = p^2 : p \times p$$
 image with real pixels $\diamond n = p^3 :$ cubic 3D scenery

Finding good bases

Exploiting similarity transforms of the form

$$P_{\sigma} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \overset{\sim}{\mapsto} \begin{pmatrix} 0 & 0 & 1 & & & \\ 1 & 0 & 0 & & 0 & \\ 0 & 1 & 0 & & & \\ \hline & 0 & & & 1 & 0 \end{pmatrix} \overset{\sim}{\mapsto} \begin{pmatrix} 1 & \zeta_3 & & & \\ & \zeta_3^2 & & & \\ & & & \zeta_3^2 & & \\ & & & & & -1 \end{pmatrix}.$$

permutation matrix

block circulant matrix

diagonal matrix

Second base change involves complex Vandermonde matrices. EDdegree not preserved!

Finding good bases

After a real, orthogonal base change Q_{σ} , the rotation $\sigma \in \mathcal{S}_9$ is represented by

$$\mathsf{I}_3 \oplus (-\mathsf{I}_2) \oplus \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Matrices that commute with it:

$\begin{array}{c} \alpha_{11} \\ \alpha_{21} \\ \alpha_{31} \end{array}$	$lpha_{12} \ lpha_{22} \ lpha_{32}$	$lpha_{13}$ $lpha_{23}$ $lpha_{33}$	0		0				
0		β_{12} β_{21}	β_{22} β_{23}	0					
	0		()	γ_1 γ_2 ϵ_1 ϵ_2	$ \begin{array}{c} -\gamma_2 \\ \gamma_1 \\ -\epsilon_2 \\ \epsilon_1 \end{array} $	$ \begin{array}{c} \delta_1 \\ \delta_2 \\ \eta_1 \\ \eta_2 \end{array} $	$ \begin{array}{c} -\delta_2 \\ \delta_1 \\ -\eta_2 \\ \eta_1 \end{array} $	

Realization map

$$\mathcal{R}\colon \mathbb{C}\longrightarrow \left\{\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \;\middle|\; a,b\in\mathbb{R}\right\}, \quad z\mapsto \begin{pmatrix} \mathfrak{Re}(z) & -\mathfrak{Im}(z) \\ \mathfrak{Im}(z) & \mathfrak{Re}(z) \end{pmatrix}.$$

Characterizing equivariance

Proposition

There is a one-to-one correspondence between the irreducible components of $\mathcal{E}^{\sigma}_{r,n\times n}(\mathbb{R})$ that contain a matrix of rank r and the non-negative integer solutions $\mathbf{r}=(r_{l,m})$ of

$$r_{1,1} + r_{2,1} + \sum_{l \ge 3} \sum_{\substack{m \in (\mathbb{Z}/l\mathbb{Z})^{\times}, \\ \frac{1}{2} < \frac{m}{l} < 1}} 2 \cdot r_{l,m} = r, \quad \text{where } 0 \le r_{l,m} \le d_{l}.$$

 d_l the dimension of the eigenspace of P_{σ} of the eigenvalue $\zeta_l = e^{2\pi i/l}$

The irreducible component $\mathcal{E}_{r,n\times n}^{\sigma,\mathbf{r}}(\mathbb{R})$ corresponding to such an integer solution \mathbf{r} after the real orthogonal base change Q_{σ} is

$$\mathcal{M}_{r_{1,1},d_{1}\times d_{1}}(\mathbb{R}) \times \mathcal{M}_{r_{2,1},d_{2}\times d_{2}}(\mathbb{R}) \times \prod_{\substack{l\geq 3 \ m\in (\mathbb{Z}/l\mathbb{Z})^{\times},\ rac{1}{2}<rac{m}{2}<1}} \mathcal{R}(\mathcal{M}_{r_{l,m},d_{l}\times d_{l}}(\mathbb{C})).$$

Via that: $\dim \checkmark \deg \checkmark$ EDdegree \checkmark Sing \checkmark

Consequence

Equivariant linear functions can <u>not</u> be parameterized by a single neural network! One needs to parameterize each irreducible component of $\mathcal{E}^{\sigma}_{r,n\times n}$ separately.

Weight sharing on de- and encoder

The real irreducible component $(\mathcal{E}_{3,9\times 9}^{\sigma,r})^{\sim\mathcal{Q}_\sigma}$ with $\mathbf{r}=(1,0,1)$ is

$$\mathcal{M}_{1,3\times3}(\mathbb{R})\, imes\,\mathcal{M}_{0,2\times2}(\mathbb{R})\, imes\,\mathcal{R}\,(\mathcal{M}_{1,2\times2}(\mathbb{C}))\,.$$

Every matrix in this component can be obtained as product of a 9×3 and a 3×9 matrix of the form $*\in\mathbb{R},\;\star\in\mathbb{C}$

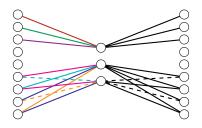


Figure: Weight-sharing of the encoder and decoder matrices. Edges of the same color share the same weight—and differ by sign, in case one of the edges is dashed.

Training on MNIST

 $\mathbb{R}^{784} \to \mathbb{R}^r \to \mathbb{R}^{784}$ $\sigma \in \mathcal{S}_{784}$

60.000 images of handwritten digits, size 28×28 each linear autoencoder, bottleneck r=99 permutation of pixels: translating to the right

Figure: *Top row:* Nine samples from the MNIST [5] test dataset, shifted horizontally randomly by up to six pixels. *Middle row:* Output of a linear equivariant autoencoder designed to be equivariant under horizontal translations. The network architecture is determined by the integer vector \mathbf{r} . *Bottom row:* Output of a dense linear autoencoder with r = 99 without equivariance imposed.

^[5] L. Deng. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Pro. Mag., 29(6):141–142, 2012.

Training on MNIST

Irreducible components

 $\mathcal{E}_{99,784\times784}^{\sigma}$ has **many** irreducible components: 72,425,986,088,826 Choose component $\mathcal{E}_{99,784\times784}^{\sigma,\mathbf{r}}$ corresponding to

```
\mathbf{r} = (r_{1,1}, r_{28,27}, r_{14,13}, r_{28,25}, r_{7,6}, r_{28,23}, r_{14,11}, r_{4,3}, r_{7,5}, r_{28,19}, r_{14,9}, r_{28,17}, r_{7,4}, r_{28,15}, r_{2,1})
= (13, 10, 9, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0).
```

Training loss

	Equivariant	equal-rank equivariant	high-pass equivariant	non-equivariant
Loss	0.0082	0.0206	0.1063	0.0057

Table: Comparison of average square loss values per pixel between linear equivariant and non-equivariant autoencoders on the MNIST test dataset.

Efficiency of equivariant architecture

Significant drop in number of parameters compared to general dense linear autoencoder! $2 \cdot 99 \cdot 784 = 155,232 \longrightarrow 5,544 = 2 \cdot (28 \cdot 13 + 2 \cdot 28 \cdot (10 + 9 + 8 + 7 + 5 + 3 + 1))$

Implementations in Python

Available at https://github.com/vahidshahverdi/Equivariant

Conclusion

Key points: algebraic geometry helps for. . .

- a thorough study of function spaces of linear neural networks. fully connected, convolutional
- 2 understanding the training process. locating critical points of the loss
- the design of neural networks. rank constraint, weight sharing properties
- determining the complexity during and post training.
 ED degree of real varieties

Future work

- full characterization of equivariance non-cyclic permutation groups
- variation of the network architecture more layers, non-linear activation functions

